1 Sites
 - sites and objectives
 - instrumental setup
 - some results

2 North Western Alps network

3 Image processing package
Sites

- alpine grassland - Tellinod
- larch forest - Tronchaney
- pinot gris vineyard - Winecam
Grassland: 1/3

- Tellinod (Torgnon - Aosta Valley)
- sub-alpine unmanaged grassland (2160 m asl)
- EC tower-phenology-radiometric vegetation indexes
- data since 2009
Larch forest: 2/3

- Tronchaney (Torgnon - Aosta Valley)
- Larch \((L. \text{ decidua}) \) forest (2100 m asl)
- EC tower-phenology-radiometric vegetation indexes
- data since 2010
objectives

- **long term monitoring** of ecosystem processes phenology
- **phenology - carbon and water fluxes**
- understand the role of climate drivers with a special focus on **snow**
Vineyard: 3/3

- Vineyard (Aosta - Aosta Valley)
- Pinot gris (600 m asl)
- phenology-radiometric vegetation indexes (16 bands Cropscan)-field measures
- just started Apr 2014
Vineyard: 3/3

- Vineyard (Aosta - Aosta Valley)
- Pinot gris (600 m asl)
- phenology-radiometric vegetation indexes (16 bands Cropscan)-field measures
- just started Apr 2014
- obj: use webcam and radiometric indexes to infer canopy status and detect stresses
camera type overview

- campbell cameras logged to dataloggers (CC640, CC5MPX)
- "homemade" systems with Nikon D5000 and microcontroller (12MPx)
- "homemade" raspberry camera with microcontroller (5MPx)
- infrared cameras (NIR-R-G, Tetracam)
some issues ...

- spatial and radiometric resolution (i.e. camera quality)
- camera settings (exposure - white balance - raw vs. jpeg)
- camera control (computer vs. microcontroller vs. datalogger)
- communication (data transfer vs. manual download)
some issues ...

- spatial and radiometric resolution (i.e. camera quality)
- camera settings (exposure - white balance - raw vs. jpeg)
- camera control (computer vs. microcontroller vs. datalogger)
- communication (data transfer vs. manual download)
some issues ...

- spatial and radiometric resolution (i.e. camera quality)
- camera settings (exposure - white balance - raw vs. jpeg)
- camera control (computer vs. microcontroller vs. datalogger)
- communication (data transfer vs. manual download)
some issues …

- spatial and radiometric resolution (i.e. camera quality)
- camera settings (exposure - white balance - raw vs. jpeg)
- camera control (computer vs. microcontroller vs. datalogger)
- communication (data transfer vs. manual download)
some results: larch forest

- larch forest phenological cycle
some results: larch forest

- **Green Index (GCC)** and **phenophase** extraction
some results: larch forest

- comparison with field observations

<table>
<thead>
<tr>
<th>Spring Phases (SP)</th>
<th>Autumn Phases (AP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1 = unexpanded buds</td>
<td></td>
</tr>
<tr>
<td>SP2 = budburst $[B_{GS}]$, needles length < 1 cm</td>
<td></td>
</tr>
<tr>
<td>SP3 = needles elongation, length: 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>SP4 = needles unfolding, length > 3 cm</td>
<td></td>
</tr>
<tr>
<td>SP5 = needles fully expanded</td>
<td></td>
</tr>
<tr>
<td>AP1 = yellow spot decolouration</td>
<td></td>
</tr>
<tr>
<td>AP2 = green to yellow</td>
<td></td>
</tr>
<tr>
<td>AP3 = yellow $[E_{GS}]$</td>
<td></td>
</tr>
<tr>
<td>AP4 = yellow to red</td>
<td></td>
</tr>
<tr>
<td>AP5 = red</td>
<td></td>
</tr>
</tbody>
</table>

$AP2-AP5$: decolouration spread on the whole crown
some results: larch forest

- comparison with field observations
some results: larch forest

- **Tracking IAV**: webcam GCC vs. ground based NDVI vs. carbon fluxes (EC)
some results: larch forest

- Tracking IAV: webcam GCC vs. ground based NDVI
some results: larch forest

- Tracking IAV: webcam GCC vs. ground based NDVI
some results: larch forest

- **Tracking IAV:** webcam GCC vs. carbon fluxes (NEE)
some results: grassland

- **grassland phenological cycle**
some results: grassland

- GCC seasonal course
some results: grassland

- **grid based analysis** (Julitta et al, 2014)
some results: grassland

- **grid based analysis** (Julitta et al, 2014)
some results: grassland

- **grid based analysis** (Julitta et al, 2014)
- phenological models optimisation (Migliavacca et al, 2012)
- grassland phenology observation methods (Filippa et al, in prep)
some results: grassland

- **grid based analysis** (Julitta et al, 2014)
- **phenological models optimisation** (Migliavacca et al, 2012)
- **grassland phenology** observation methods (Filippa et al, in prep)
some results: grassland

- grid based analysis (Julitta et al, 2014)
- phenological models optimisation (Migliavacca et al, 2012)
- grassland phenology observation methods (Filippa et al, in prep)
some results: grassland

- grid based analysis (Julitta et al, 2014)
- phenological models optimisation (Migliavacca et al, 2012)
- Light use efficiency (LUE) models (Rossini et al, 2012, 2013)
- grassland phenology observation methods (Filippa et al, in prep)
some results: vineyard

- vineyard phenological cycle
North Western Alps phenological network
North Western Alps phenological network

• started in 2008

• Italy-France cooperation project (Interreg Alcotra)
 • PhenoAlp (2008-2011) www.phenoalp.eu
 • e-Pheno (2012-2014) www.epheno.eu

• Italy - Aosta Valley (ARPA, Parco Naturale Mont Avic, Parco Nazionale Gran Paradiso)

• France - (CREA, Parc National des Ecrins, LECA Grenoble, Parc des Bauges)

• field observations, sensor based observations (NDVI, webcam), schools engagement
North Western Alps phenological network

- Webcam and NDVI sensors (10 sites: 5IT, 5FR)
North Western Alps phenological network

- Webcam and NDVI sensors (10 sites: 5IT, 5FR)
 - most sites installed in 2012-2013
- ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl)
 - larch forests
- common protocols and set-up but different cameras
- storing and processing strategy under discussion
North Western Alps phenological network

- Webcam and NDVI sensors (10 sites: 5IT, 5FR)
- most sites installed in 2012-2013
- ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl) larch forests
- common protocols and set-up but different cameras
- storing and processing strategy under discussion
Webcam and NDVI sensors (10 sites: 5IT, 5FR)

most sites installed in 2012-2013

ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl) larch forests

common protocols and set-up but different cameras

storing and processing strategy under discussion
North Western Alps phenological network

- Webcam and NDVI sensors (10 sites: 5IT, 5FR)
- most sites installed in 2012-2013
- ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl) larch forests
- common protocols and set-up but different cameras
- storing and processing strategy under discussion
North Western Alps phenological network

- Webcam and NDVI sensors (10 sites: 5IT, 5FR)
- most sites installed in 2012-2013
- ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl) larch forests
- common protocols and set-up but different cameras
- storing and processing strategy under discussion
NDVI database

- NDVI database (12 sites: 5IT, 7FR) but other 6 from LECA ready to be included
NDVI database
NDVI sensors comparison

- similar installation protocols but different sensors (Skye and ESE-LECA-Paris)
NDVI sensors comparison

- similar installation protocols but different sensors (Skye and ESE-LECA-Paris)
NDVI sensors comparison
NDVI sensors comparison
NDVI database

- NDVI database (12 sites: 5IT, 7FR) but other 6 from LECA ready to be included

- similar installation protocols but different sensors (Skye and ESE-LECA-Paris)

- most sites installed in 2010-2011

- ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl) larch forests

- storing and processing strategy defined (e-phenou database)
NDVI database

- NDVI database (12 sites: 5IT, 7FR) but other 6 from LECA ready to be included
- similar installation protocols but different sensors (Skye and ESE-LECA-Paris)
- most sites installed in 2010-2011
 - ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl) larch forests
- storing and processing strategy defined (e-phenology database)
NDVI database

- NDVI database (12 sites: 5IT, 7FR) but other 6 from LECA ready to be included
- similar installation protocols but different sensors (Skye and ESE-LECA-Paris)
- most sites installed in 2010-2011
- ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl)
larch forests
- storing and processing strategy defined (e-phenomenology database)
NDVI database

- NDVI database (12 sites: 5IT, 7FR) but other 6 from LECA ready to be included
- similar installation protocols but different sensors (Skye and ESE-LECA-Paris)
- most sites installed in 2010-2011
- ecosystems: grasslands (1800-2400 m asl) and subalpine (< 2000 m asl) larch forests
- storing and processing strategy defined (e-phenology database)
Image Processing package
• R package for ROI definition, VIs computation, filtering, fitting, phenophase extraction and uncertainty estimation

• collaborative effort with Mirco’s and Andrew’s groups

• developed and tested on phenocam (phenocam.sr.unh.edu/webcam/) dataset: deciduous and evergreen forest, grassland and cropland

• v0 released soon (1 month)
Image Processing package

- R package for ROI definition, VIs computation, filtering, fitting, phenophase extraction and uncertainty estimation

- Collaborative effort with Mirco’s and Andrew’s groups

 - Developed and tested on phenocam (phenocam.sr.unh.edu/webcam/) dataset: deciduous and evergreen forest, grassland and cropland

 - v0 released soon (1 month)
R package for ROI definition, VIs computation, filtering, fitting, phenophase extraction and uncertainty estimation

collaborative effort with Mirco’s and Andrew’s groups

developed and tested on phenocam (phenocam.sr.unh.edu/webcam/) dataset: deciduous and evergreen forest, grassland and cropland

v0 released soon (1 month)
Image Processing package

- R package for ROI definition, VIs computation, filtering, fitting, phenophase extraction and uncertainty estimation
- Collaborative effort with Mirco’s and Andrew’s groups
- Developed and tested on phenocam (phenocam.sr.unh.edu/webcam/) dataset: deciduous and evergreen forest, grassland and cropland
- v0 released soon (1 month)
ROI (Region of Interest) definition

- User can define ROIs on a reference image clicking on ROIs vertexes
VI’s computation

- VI’s (GCC, BCC, RCC, GEI, BRI, HSV, ...) are computed as mean ROI values for each image.
VI’s filtering

- most recently published filtering approaches are implemented: max (Sonnentag 2012), spline and MAD (Migliavacca 2011), clouds (Julitta 2014)

- filters can be applied in a default sequence or according to user’s needs

- daily aggregation
VI’s filtering

• most recently published filtering approaches are implemented: max (Sonnentag 2012), spline and MAD (Migliavacca 2011), clouds (Julitta 2014)

• filters can be applied in a default sequence or according to user’s needs

• daily aggregation
VI’s filtering

• most recently published filtering approaches are implemented: max (Sonnentag 2012), spline and MAD (Migliavacca 2011), clouds (Julitta 2014)

• filters can be applied in a default sequence or according to user’s needs

• daily aggregation
VI’s filtering

torgnon-ld

No cloud filtering

Only Max filter

Only max and spline
VI's filtering

![Graphs showing the effect of different filtering methods on VIs over time.](#)
VI's filtering
filtered timeseries fitting:
 - spline

phenophases (i.e. start of season, end of season, ...) extraction:
 - fixed thresholds (e.g. half peak)
 - derivative approaches (inflection points of fitting functions)
 - breakpoint analysis

phenophase uncertainty estimation (residual bootstrap)
• **filtered timeseries fitting:**

 • spline

• **phenophases** (i.e. start of season, end of season, ...) extraction:

 • fixed thresholds (e.g. half peak)

 • derivative approaches (inflection points of fitting functions)

 • breakpoint analysis

• **phenophase uncertainty estimation** (residual bootstrap)
• filtered timeseries fitting:
 • spline

• phenophases (i.e. start of season, end of season, ...) extraction:
 • fixed thresholds (e.g. half peak)
 • derivative approaches (inflection points of fitting functions)
 • breakpoint analysis

• phenophase uncertainty estimation (residual bootstrap)
filtered timeseries fitting:
 - spline

phenophases (i.e. start of season, end of season, ...) extraction:
 - fixed thresholds (e.g. half peak)
 - derivative approaches (inflection points of fitting functions)
 - breakpoint analysis

phenophase uncertainty estimation (residual bootstrap)
• **filtered timeseries fitting:**
 - spline

• **phenophases** (i.e start of season, end of season, ...) extraction:
 - fixed thresholds (e.g. half peak)
 - derivative approaches (inflection points of fitting functions)
 - breakpoint analysis

• **phenophase uncertainty estimation** (residual bootstrap)
• filtered timeseries fitting:
 • spline

• phenophases (i.e start of season, end of season, ...) extraction:
 • fixed thresholds (e.g. half peak)
 • derivative approaches (inflection points of fitting functions)
 • breakpoint analysis

• phenophase uncertainty estimation (residual bootstrap)
- filtered timeseries fitting:
 - spline

- phenophases (i.e. start of season, end of season, ...) extraction:
 - fixed thresholds (e.g. half peak)
 - derivative approaches (inflection points of fitting functions)
 - breakpoint analysis

- phenophase uncertainty estimation (residual bootstrap)
filtered timeseries fitting:
- spline

phenophases (i.e start of season, end of season, ...) extraction:
- fixed thresholds (e.g. half peak)
- derivative approaches (inflection points of fitting functions)
- breakpoint analysis

phenophase uncertainty estimation (residual bootstrap)
Figure: Bartlett filtered data - Klosterman et al 2014 fitting and phenophases
Figure: Bartlett filtered data - Klosterman et al 2014 - Gu et al 2009 phenophases
Deciduous forest - Harvard Forest
Evergreen forest - Chibougamu Forest
Mixed forest - Canada OBS Forest
Sites North Western Alps network Image processing package

PhenoWebcam workshop
Grassland - Lethbridge Grassland

Lethbridge Grassland - NetCam SC IR - Fri Sep 05 06:01:10 2014
Temperature: 29.5 °C internal, 8.5 °C outside
RH: 0%, Pressure: 915.0 millibars
Exposure: 1300
Shrubland - Burnssagebrush
<table>
<thead>
<tr>
<th>Sites</th>
<th>North Western Alps network</th>
<th>Image processing package</th>
</tr>
</thead>
</table>

PhenoWebcam workshop

<table>
<thead>
<tr>
<th>Raw data</th>
<th>Spline</th>
<th>Elmore</th>
<th>Beck</th>
<th>Klos 1</th>
<th>Klos 2</th>
<th>Gu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spline ths</th>
<th>Deriv ths</th>
<th>Break points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klos ths</th>
<th>Gu ths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and european dataset

- future developments:
 - import external ROIs
 - ROIs change detection
 - include grid based analysis
 - improve uncertainty estimation
 - multipeak phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and European dataset

future developments:

- import external ROIs
- ROIs change detection
- include grid-based analysis
- improve uncertainty estimation
- multiple-peak phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

• release v0

• evaluate fittings performance and phenophase extraction on phenocam and European dataset

• future developments:
 • import external ROIs
 • ROIs change detection
 • include grid based analysis
 • improve uncertainty estimation
 • multi-peak phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and European dataset

future developments:
- import external ROIs
- ROIs change detection
- include grid based analysis
- improve uncertainty estimation
- multipeack phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and European dataset

future developments:

- import external ROIs
- ROIs change detection
- include grid based analysis
- improve uncertainty estimation
- multipeack phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and European dataset

- future developments:
 - import external ROIs
 - ROIs change detection
 - include grid based analysis
 - improve uncertainty estimation
 - multi-peak phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and european dataset

- future developments:
 - import external ROIs
 - ROIs change detection
 - include grid based analysis
 - improve uncertainty estimation
 - multipeack phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and European dataset

future developments:
- import external ROIs
- ROIs change detection
- include grid-based analysis
- improve uncertainty estimation
- multi-peak phenological cycle (drought, crops, ...)

PhenoWebcam workshop
next steps

- release v0

- evaluate fittings performance and phenophase extraction on phenocam and European dataset

- future developments:
 - import external ROIs
 - ROIs change detection
 - include grid based analysis
 - improve uncertainty estimation
 - multi-peak phenological cycle (drought, crops, ...)

PhenoWebcam workshop