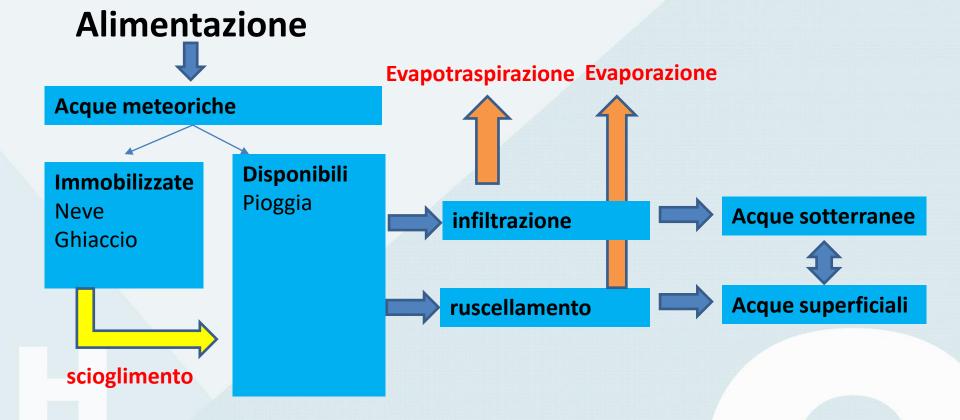



Didattica ARPA VDA

Pietro Capodaglio- ARPA Valle d'Aosta




#### **IL CICLO IDROLOGICO**



2





# meccanismi di

#### **METEORICHE**

pioggia, neve, grandine, nebbia ...(origine di tutte le altre

forme di acque dolci)

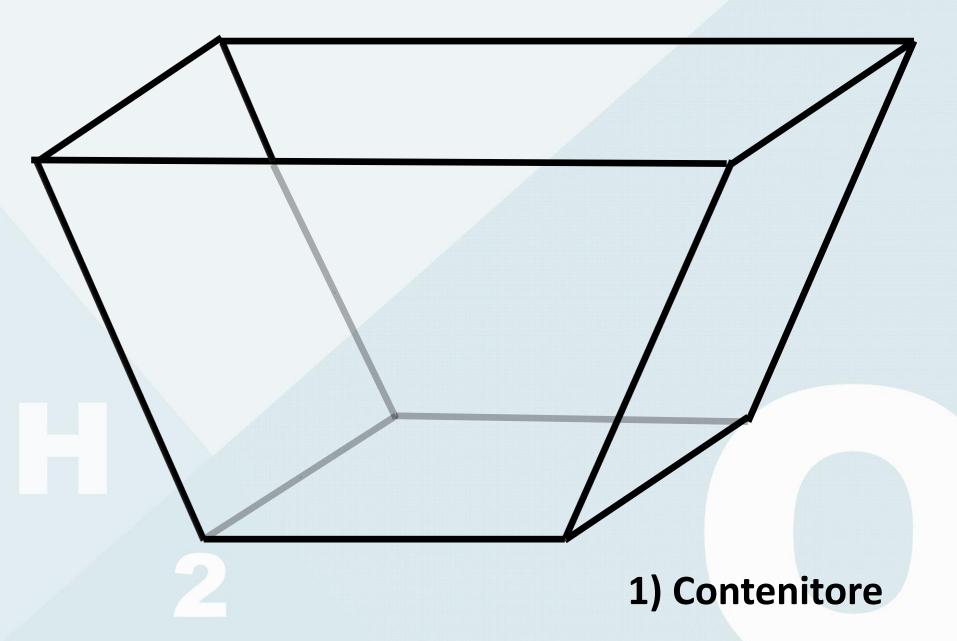
#### **SUPERFICIALI**

sono direttamente accessibili e visibili ai nostri occhi fiumi, torrenti, laghi

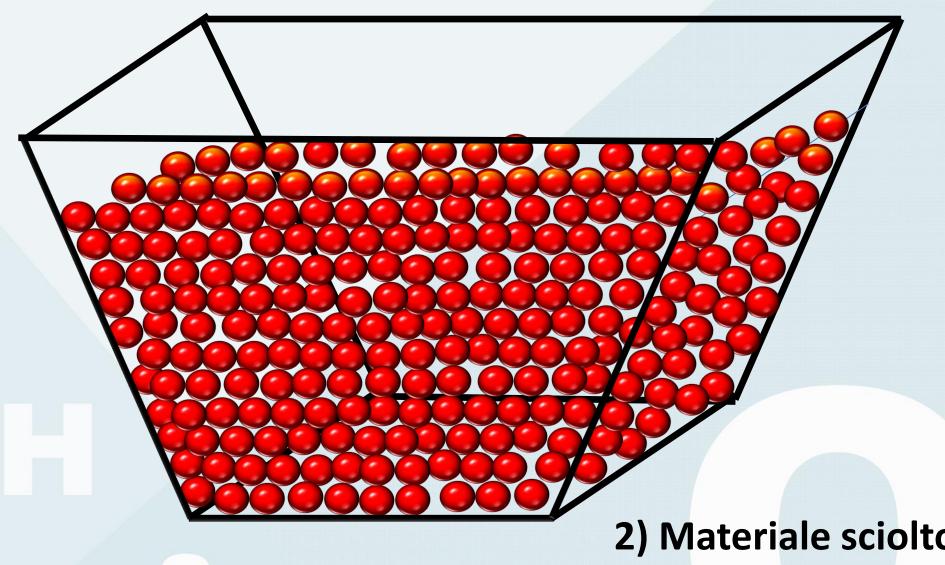
#### **SOTTERRANEE**

sono nascoste e si muovono nel sottosuolo

falde e sorgenti

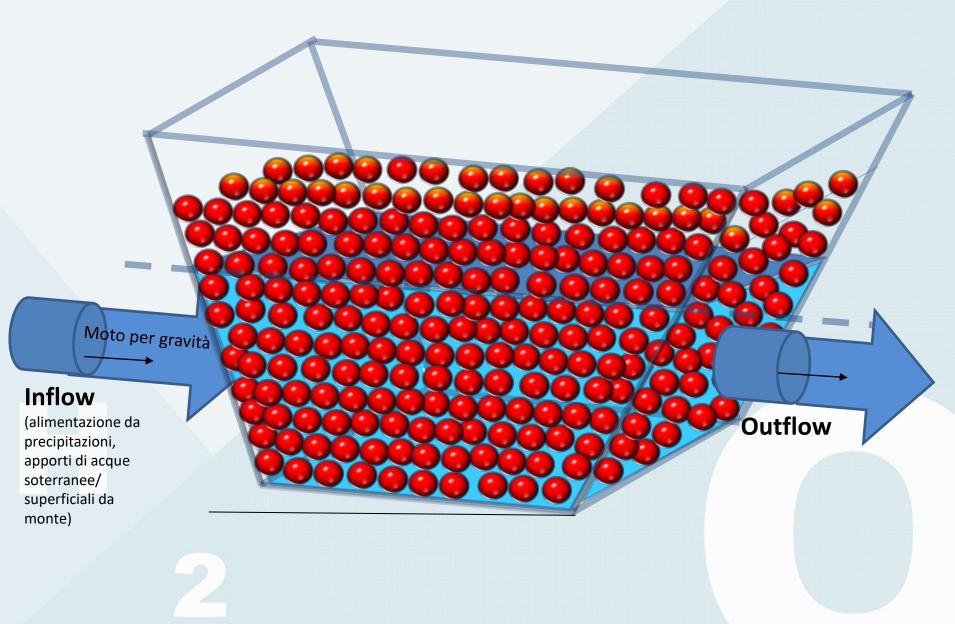

#### **GHIACCIO**

stoccato nelle di alta montagna, zone artiche e soprattutto antartiche


ghiacciai, calotte\_\_\_\_\_\_glaciali

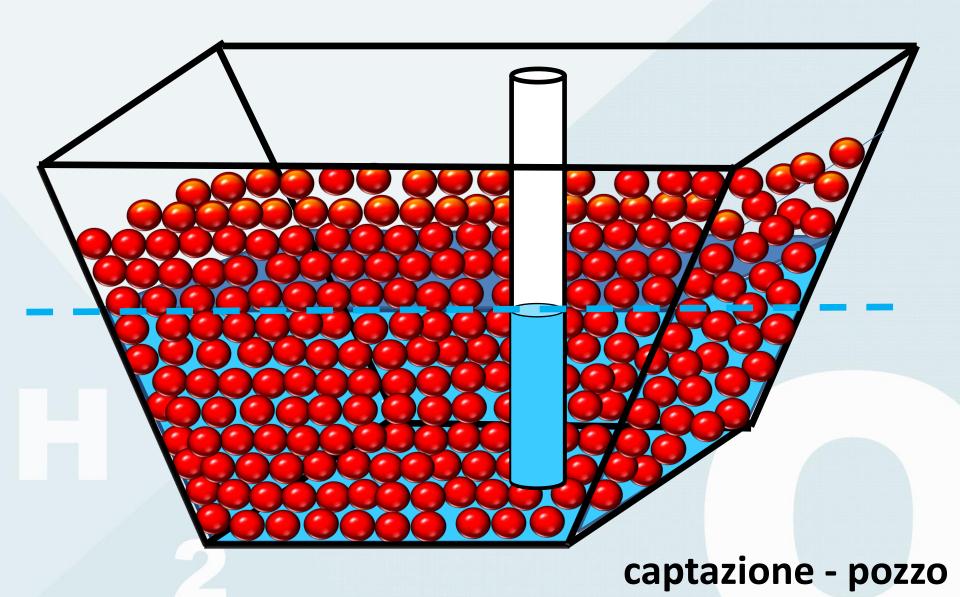
CLI MA TOL OGI









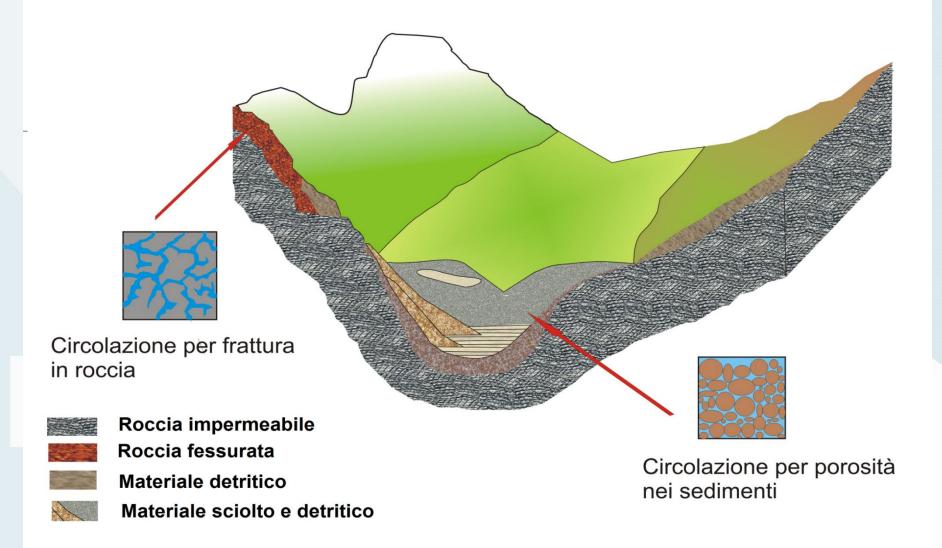


contenitore + materiale sciolto = serbatoio





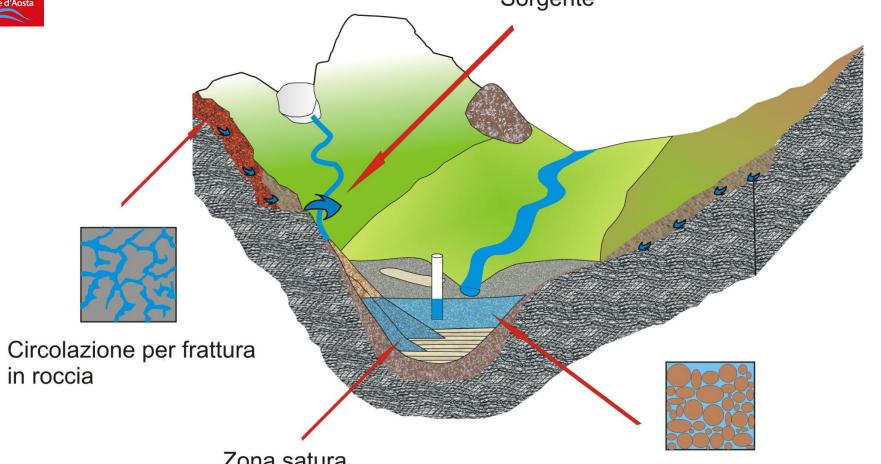












1) Contenitore: ad es, una valle alpina....





#### contenitore + materiale sciolto = serbatoio





Zona satura

Roccia impermeabile

Roccia fessurata

Materiale detritico

Materiale sciolto e detritico

Circolazione per porosità nei sedimenti

Acqua sotterranea

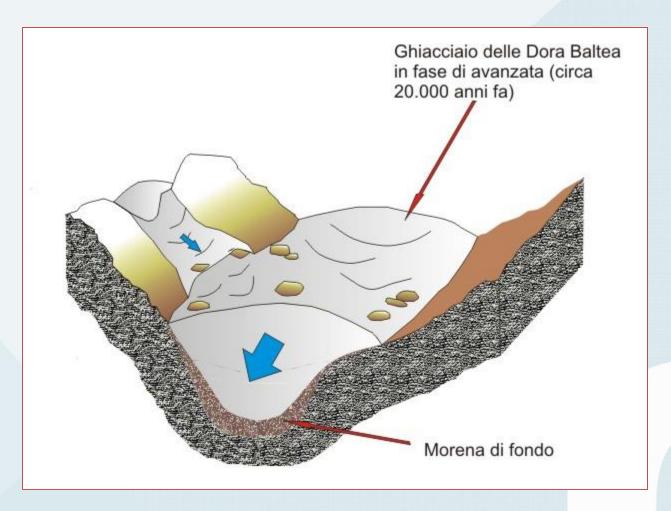
serbatoio + acqua = acquifero



Affioramento della falda freatica a seguito di scavi superficiali in terreni alluvionali



2




## La storia geologica degli acquiferi in Valle d'Aosta inizia durante l'ultima glaciazione...



20.000 anni fa: la massima espansione glaciale......





...il fondovalle era coperto completamente da una spessa coltre glaciale...

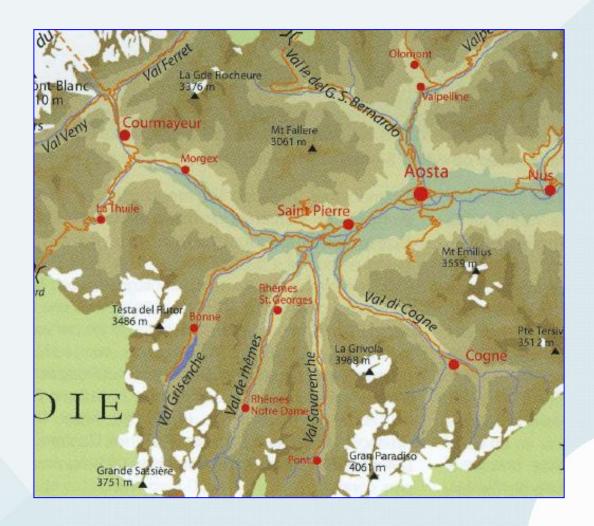






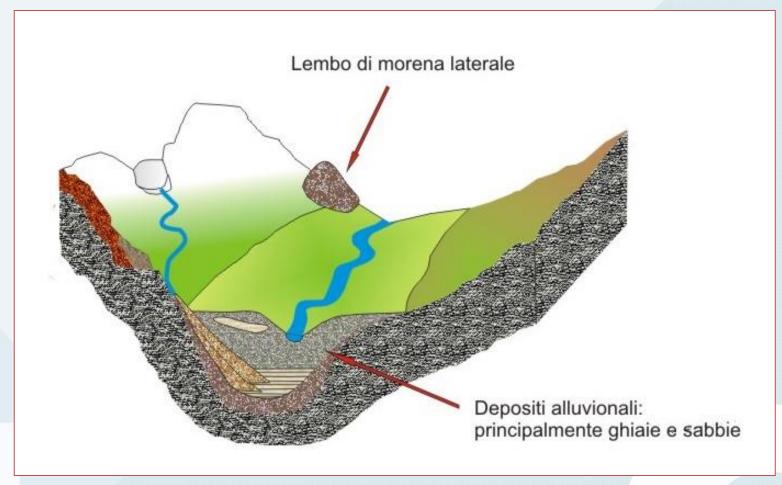
...15000 anni fa: il ghiacciaio comincia a ritirarsi.....








....il ritiro continua......








...sino alla situazione attuale





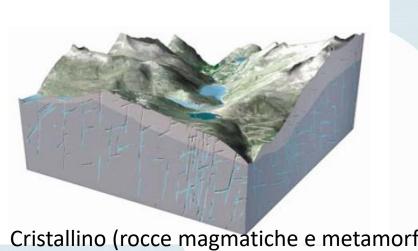
Oggi: il ghiacciaio ha lasciato una valle ad "U". Il corso d'acqua principale ha deposto sull'intero fondovalle uno spessore notevole di sedimenti alluvionali sabbioso-ghiaiosi



# Condizioni per l'esistenza delle acque sotterranee:

- 1. Alimentazione 

  è funzione del clima 


  (precipitazioni, ghiacciai,..)
- 2. <u>permeabilità</u> e <u>porosità</u> → è funzione della geologia (capacità di contenere e veicolare l'acqua) dei materiali che costituiscono il sottosuolo

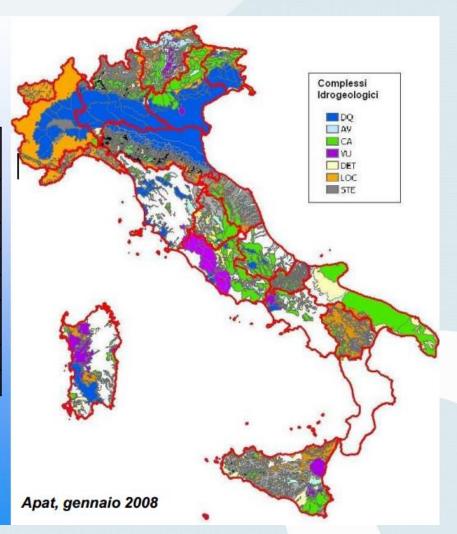


### Principali ambienti idrogeologici










#### Ambienti idrogeologici in Italia

#### Complessi idrogeologici

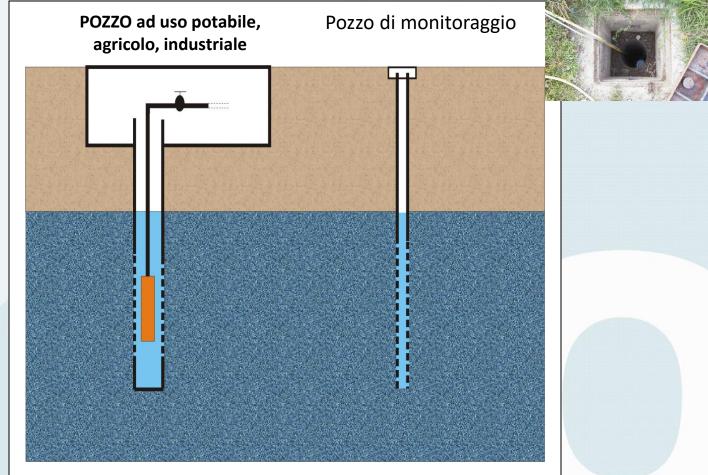
(Tabella 1 All.1 D.Lgs. 30/2009) (Fried, Mouton e Mangano, 1982)

| Acronimo | Complessi idrogeologici                                |
|----------|--------------------------------------------------------|
| DQ       | Alluvioni delle depressioni quaternarie                |
| AV       | Alluvioni vallive                                      |
| CA       | Calcari                                                |
| VU       | Vulcaniti                                              |
| DET      | Formazioni detritiche degli altipiani plio-quaternarie |
| LOC      | Acquiferi locali                                       |
| STE      | Formazioni sterili                                     |





## Importanza delle acque sotterranee: sono una risorsa....


- ✓ pregiata
- ✓ protetta naturalmente dagli inquinamenti provenienti dalla superficie
- ✓ massicciamente utilizzata per tutti gli usi (pozzi ad uso potabile industriale agricolo)
- ✓ abbondante e disponibile in tutte le stagioni

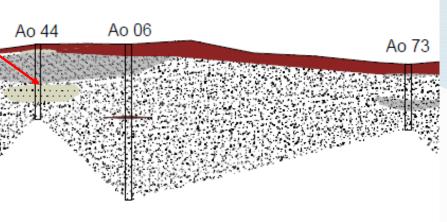




## Come si studiano le acque sotterranee: indagini DIRETTE












In fase di perforazione è possibile studiare e ricostruire la litologia del terreno attraversato (stratigrafia)






2



#### Indagini non scientifiche: la rabdomanzia.....





2





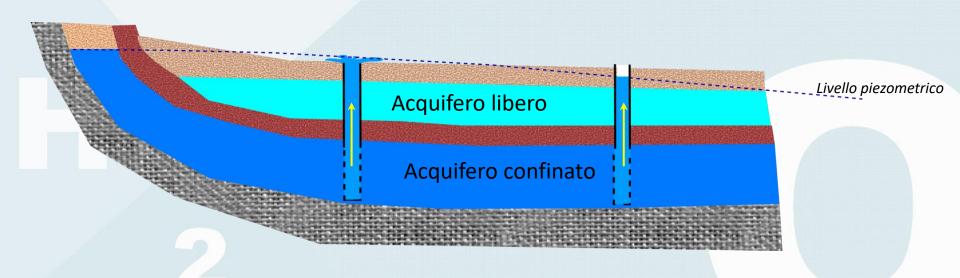
#### **Acquifero libero**



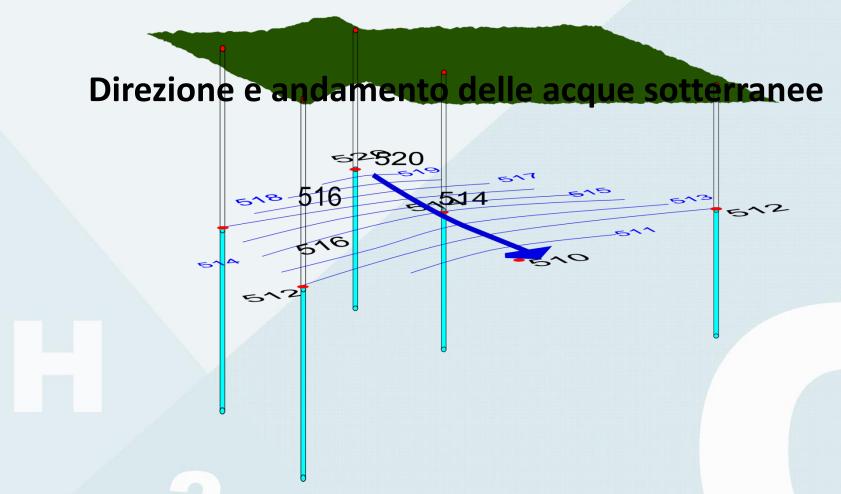
- Delimitato solo inferiormente da un livello impermeabile
- La falda superiormente libera può muoversi in verticale in funzione delle condizioni di alimentazione (escursione)
- Nei pozzi o piezometri il livello dell'acqua corrisponde all'altezza della falda libera nel terreno

#### Livello piezometrico

Livello dell'acqua «libera» all'interno del punto di misura Rappresenta il carico idraulico della falda – è alla base del movimento dell'acqua nel sottosuolo



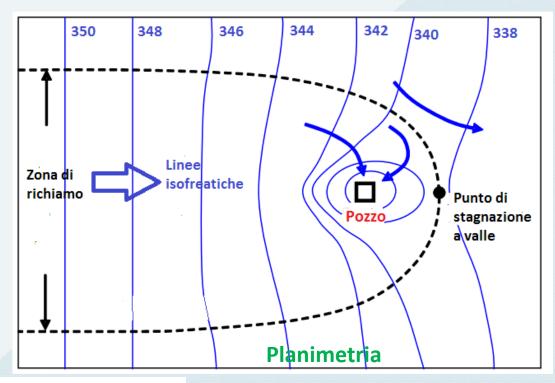

#### **Acquifero confinato**


- Delimitato superiormente ed inferiormente da un livelli impermeabili
- subisce una pressione (geostatica) dall'alto verso il basso pari alla colonna di terreno sovrastante.



L'acqua al suo interno è in pressione e se "libera" raggiunge quote maggiori al tetto impermeabile superiore



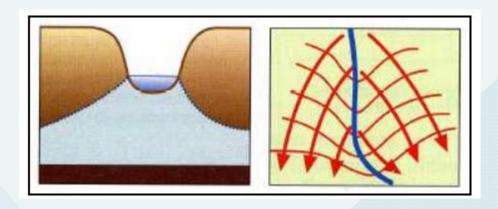





Come un fiume, le acque sotterranee hanno una loro direzione e velocità (bassa). La superficie del corpo idrico sotterraneo è un piano, debolmente inclinato da monte verso valle



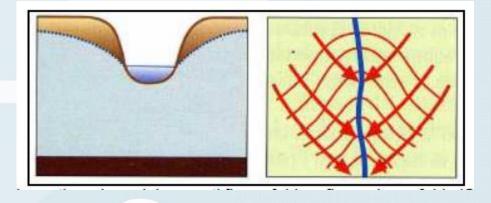
Effetto di un pozzo in esercizio sulla morfologia della falda






Le linee isofreatiche risultano deformate vicino al pozzo



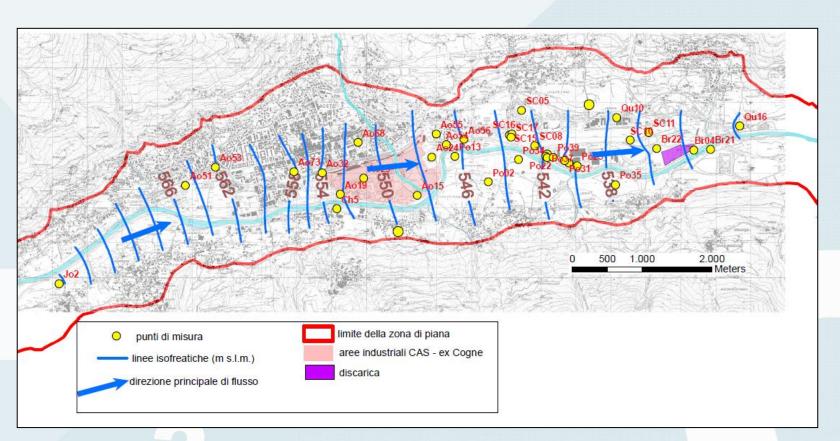

#### Rapporti fiume/falda



Il fiume alimenta la falda....

Sezione

In carta




....e viceversa

Rapporti variabili, nello stesso punto, nei periodi di piena/magra



#### Carta piezometrica della piana di Aosta





#### Chimismo delle acque

- Acqua meteorica assimilabile a acqua distillata
- Durante il passaggio nell'atmosfera si arricchisce in CO2, che in acqua diventa acido carbonico
- Penetrando nel terreno, l'acqua (a causa dell'acido carbonico) aggredisce (azione solvente) le rocce
- Le rocce più attaccabili sono quelle carbonatiche: i Carbonati di Ca e Mg diventano Bicarbonati solubili di Ca e Mg
- Quindi, i principali componenti di un'acqua naturale sono solitamente Ca, Mg e Bicarbonato



#### Geochimica delle acque

Le acque sono in equilibrio chimico-fisico con la matrice che le ospita. Le acque assumono quindi le caratteristiche chimiche delle rocce circostanti.

<u>Mineralizzazione</u>: progressiva messa in soluzione ed accumulo nell'acqua di elementi e molecole (stato ionico e colloidale) provenienti dal terreno e dalle rocce

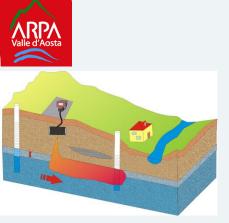
Principali macrodescrittori geochimici: Ca<sup>++</sup>, Mg<sup>++</sup>, Na<sup>++</sup>, K<sup>+</sup>, Espressi in Cl<sup>-</sup>, SO<sub>4</sub><sup>---</sup>, HCO<sub>3</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup> mg/l (ppm) SiO<sub>2</sub>

alcune rocce cedono altri loro elementi caratteristici come alcuni metalli : Espressi in Al , Cu, Fe, Mn, Cr .....  $\mu g/l$  (ppb)

Le condizioni di pH e ossigenazione sono fondamentali nel regolare l'equilibrio degli elementi presenti nelle acque di falda



## Esempio di risultati analitici Geochimica delle acque


| Codice ARPA                          |                    |                          | SP6           | Jo2                  | Ao51                 | Ao73       | Ao61       | Ao68       | Ao77       | Ch5          | Ao15       | Ao19       | Ao23       |
|--------------------------------------|--------------------|--------------------------|---------------|----------------------|----------------------|------------|------------|------------|------------|--------------|------------|------------|------------|
| tipologis                            |                    |                          | piezometro    | piezometro           | piezometro           | piezometra | piezometra | piezometra | piezometro | piezometro   | piezometro | oiezometre | piezometro |
| data prelievo - 2015                 |                    |                          | 3/6           | 3/6                  | 3/6                  | 8/6        | 4/6        | 3/6        | 4/6        | 4/6          | 8/6        | 8/6        | 9/6        |
|                                      | U. di M.           | Limiti D.Lgs.152/06      | - 0.0         | 0.0                  | 0.0                  | 0.0        | 410        | 0.0        | 410        | 410          | 0,0        | 0,0        | - 0.0      |
| ρH                                   | O. 41111.          | Emilia D.Eqs. DE100      | 7,13          | 7,73                 | 7,18                 | 7,66       | 7,27       | 6,87       | 7,36       | 7,45         | 7,59       | 7,54       | 6,95       |
| temperatura                          | ·c                 |                          | 13,2          | 11,5                 | 12,5                 | 11,8       | 15.1       | 13,8       | 12,6       | 11,9         | 12,3       | 12,4       | 13,5       |
| conducibilità                        | μS/cm              | 2500°                    | 685           | 408                  | 545                  | 462        | 813        | 791        | 654        | 757          | 737        | 665        | 695        |
| ossigeno                             | mg/l               | 2,000                    | 7,67          | 9,15                 | 5,5                  | 11,44      | 9,67       | 7,95       | 6,76       | 8,31         | 8,33       | 8,53       | 8,76       |
| Bicarbonati                          | mq/l               |                          | 217.7         | 133,4                | 190.1                | 191.6      | 285        | 197.3      | 233.7      | 200,6        | 224.4      | 255.5      | 222,5      |
| Cianuri Liberi                       | ug/l               | 50*                      | < 2,5         | √2.5                 | < 2,5                | ₹2,5       | ₹2.5       | < 2.5      | < 2,5      | < 2,5        | < 2.5      | < 2,5      | < 2,5      |
| Dureza                               | mg/l               | ,,,                      | 368,31        | 200,35               | 274,6                | 212,51     | 383,81     | 387,08     | 242,5      | 429,53       | 329,16     | 319,42     | 304,68     |
| Ammonio                              | mq/l               | 0.5*                     | < 0.02        | < 0,02               | < 0.02               | < 0.02     | < 0.02     | < 0,02     | < 0.02     | < 0.02       | < 0.02     | 0.04       | < 0,02     |
| Calcio                               | mg/l               | 0,5                      | 37,4          | 65,91                | 87,13                | 68,6       | 122,04     | 118,14     | 78,83      | 134,56       | 101,89     | 36,3       | 93,47      |
| Cloruri                              | mg/l               | 250*                     | 17,39         | 12,85                | 13,49                | 18,23      | 52,7       | 48,54      | 19,61      | 10,87        | 55,01      | 36,88      | 45,51      |
| Fluoruri                             | mgri<br>µg/l       | 1500                     | < 70          | 129                  | 111                  | 10,23      | 93         | 105        | 122        | 156          | 335        | 161        | 249        |
| Magnesio                             | mg/l               | 1500                     | 30,37         | 8,68                 | 13,84                | 10         | 19,19      | 22,35      | 11,08      | 22,7         | 18,14      | 18,8       | 17.3       |
| Nitrati                              | mg/l               | 50**                     | 8,95          | 3,52                 | 6,81                 | 5,28       | 15,13      | 15,77      | 7,37       | 5,4          | 10,14      | 7.04       | 12,89      |
| Nitriti                              | mq/l               | 0,5*                     | < 50          | < 50                 | < 50                 | < 50       | < 50       | < 50       | <50        | - 5,4<br><50 | < 50       | <50        | < 50       |
| Potassio                             | mgri<br>mg/l       | 0,5                      | 2,22          | 1,96                 | 1,85                 | 1,83       | 2,58       | 2,98       | 2,63       | 1,91         | 3,27       | 2,49       | 2,25       |
| Sodio                                | mg/l               | 200**                    | 8,55          | 8,68                 | 9,39                 | 9,21       | 23,44      | 18,43      | 18,97      | 6,81         | 27.7       | 16,88      | 26,15      |
| Solfati                              | mgri<br>mg/l       | 250                      | 114.11        | 65,93                | 75,33                | 62,23      | 100.2      | 115,91     | 69,82      | 252,74       | 116,85     | 85,55      | 107,41     |
| Alluminio                            | mgri<br>µg/l       | 200                      | < 4,76        | 65,53<br>< 4,76      | (4,76                | < 4,76     | < 4,76     | < 4,76     | 10,06      | <4,76        | < 4,76     | < 4,76     | 12,57      |
| Antimonio                            | ug/l               | 5                        | <1,20         | < 1,20               | <1,20                | <1,20      | <1,20      | < 1,20     | < 1,20     | <1,20        | < 1,20     | <1,20      | < 1,20     |
| Argento                              | дел<br>це/I        | 10                       | < 0,52        | < 0,52               | < 0.52               | < 0,52     | < 0,52     | < 0,52     | < 0,52     | < 0,52       | < 0,52     | < 0,52     | ₹0,52      |
| Arsenico                             | дап<br>дай         | 10                       | < 2,96        | < 2,36               | < 2,36               | < 2,96     | < 2,96     | < 2,96     | < 2,36     | < 2,96       | < 2,96     | < 2,96     | < 2,36     |
| Bario                                | <u>дан</u>         | 10                       | 8,92          | 23,47                | 16,6                 | 25,36      | 25,51      | 24,09      | 19,61      | 6,3          | 34,66      | 34,66      | 31,76      |
| Cadmio                               | μq/l               | 5                        | < 2,96        | < 0,56               | < 0,56               | < 0,56     | < 0,56     | < 0,56     | < 0,56     | < 0,56       | < 0,56     | < 0,56     | < 0,56     |
| Cromo                                | дап<br>дай         | 50                       | < 0,17        | < 0,17               | < 0,17               | < 0,17     | 1,06       | < 0,17     | 4,64       | 1,61         | 10,83      | 2,79       | 177.1      |
| CromoVI                              | μq/l               | 5                        | < 1,12        | < 1,12               | < 1,12               | < 1,12     | < 1,12     | < 1,12     | 1,42       | < 1,12       | 9,76       | 2,05       | 165,3      |
| Ferro                                | дел<br>це/I        | 200                      | < 1,64        | < 1,64               | < 1,64               | < 1,64     | < 1,64     | < 1,64     | 164.5      | < 1,64       | < 1,64     | < 1,64     | < 1,64     |
| Manganese                            | дап<br>дай         | 50                       | < 0.62        | < 0,62               | < 0.62               | < 0.62     | < 0.62     | < 0.62     | 182,74     | < 0,62       | < 0.62     | < 0.62     | < 0,62     |
| Mercurio                             | дел<br>це/I        | 1                        | < 0,36        | < 0,36               | < 0,36               | < 0,36     | < 0,36     | < 0,36     | < 0,36     | < 0,36       | < 0,36     | < 0,36     | ₹0,36      |
| Nichel                               | μq/l               | 20                       | < 0,5         | < 0,5                | < 0,5                | < 0,5      | < 0,5      | < 0,5      | 5,73       | < 0,5        | 0,79       | < 0,5      | < 0,5      |
| Piombo                               | дап<br>дай         | 10                       | < 0,87        | < 0.87               | < 0.87               | ₹0,87      | ₹0,87      | < 0,87     | < 0,87     | < 0,87       | < 0,87     | < 0,87     | ₹0,87      |
| Rame                                 | <u>дан</u>         | 1000                     | < 0,43        | < 0,49               | < 0,49               | < 0,43     | < 0,49     | < 0,43     | 7,29       | < 0,43       | < 0,49     | < 0,49     | < 0,43     |
| Selenio                              | дел<br>це/I        | 10                       | 2,41          | < 0,92               | < 0,92               | < 0.92     | 2,91       | 3,51       | < 0.92     | < 0.92       | 4,11       | < 0,92     | < 0,32     |
| Vanadio                              | дал<br>дай         | 50*                      | < 0,03        | < 0,03               | < 0,03               | < 0,03     | 1,56       | < 0.03     | < 0.03     | 2,33         | < 0,09     | < 0,03     | ₹0,03      |
| Zinco                                | <u>дан</u>         | 3000                     | < 12,37       | <12,37               | < 12,37              | < 12,37    | < 12,37    | < 12,37    | < 12,37    | 2,22         | < 12,37    | < 12,37    | < 12,37    |
| SOLVENTI CLORURATI                   | p.q.ii             | 3000                     | \ 12,01       | \ 12 <sub>1</sub> 01 | \ 12 <sub>1</sub> 01 | 112,01     | 112,01     | 112,01     | V 12,01    | 2,22         | 112,01     | 112,01     | 112,01     |
| Diclorometano                        | μα/Ι               |                          | < 0,1         | < 0,1                | < 0,1                | < 0.1      | < 0,1      | < 0.1      | < 0,1      | < 0.1        | < 0.1      | < 0.1      | < 0,1      |
| 1,1-dicloroetilene                   | μqn<br>μq/l        |                          | < 0,1         | < 0,3                | < 0,3                | < 0,3      | < 0,3      | < 0,3      | < 0,1      | < 0,3        | < 0,1      | < 0,3      | ₹0,1       |
| Cloroformio                          | дел<br>дел         | 0.15                     | < 0.3         | ₹0,3                 | < 0,3                | < 0,3      | < 0,3      | < 0,3      | < 0.3      | ₹0,3         | < 0,3      | < 0,3      | ₹0,3       |
| 1,1,1-tricloroetano                  | <u>идп</u><br>ид/I | 0,15                     | ₹0,3          | < 0,1                | ₹0,3                 | < 0,1      | ₹0,3       | 0,1        | < 0,1      | < 0,1        | < 0.1      | < 0.1      | ₹0,3       |
| Tricloroetilene                      | μqn<br>μq/l        | 1,5                      | < 0,1         | < 0,1                | < 0,1                | < 0,1      | < 0,1      | < 0.1      | < 0,1      | < 0,1        | < 0.1      | < 0.1      | ₹ 0,1      |
| Tetracloroetilene                    | деп<br>Деди        | 1,1                      | < 0,1         | < 0,1                | 0,3                  | < 0.1      | < 0,1      | 3.1        | 0,2        | < 0,1        | < 0.1      | < 0.1      | 0.1        |
| Bromoformio                          | идл<br>ид/I        | 0,3                      | < 0,1         | < 0,1                | < 0,3                | < 0,1      | < 0,1      | < 0,3      | < 0.3      | < 0,1        | < 0,1      | < 0,1      | < 0.3      |
| Dibromoclorometano                   | μqn<br>μq/l        | 0,13                     | < 0,1         | < 0,1                | < 0,1                | ₹0,3       | ₹0,3       | ₹0,3       | < 0,1      | < 0,1        | < 0,1      | < 0,1      | ₹0,3       |
| Bromodiclorometano                   | <u>дап</u>         | 0,13                     | < 0,1         | < 0,1                | < 0,1                | < 0.1      | < 0.1      | < 0.1      | < 0.1      | < 0.1        | < 0.1      | < 0.1      | ₹ 0,1      |
| SOLVENTI AROMATICI                   | P-911              | 0,11                     | 10,1          | 10,1                 | 10,1                 | 10,1       | 10,1       | 10,1       | 10,1       | V 0,1        | 10,1       | 10,1       | 10,1       |
| benzene                              | μα/Ι               | 0,5                      | < 0,5         | n.e.                 | < 0,5                | n.e.       | n.e.       | n.e.       | < 0,5      | n.e.         | n.e.       | n.e.       | n.e.       |
| Toluene                              | деп<br>Деди        | 0,5                      | < 0,5         | n.e.                 | ₹0,5                 | n.e.       | n.e.       | n.e.       | < 0,5      | n.e.<br>n.e. | n.e.       | n.e.       | n.e.       |
| Etilbenzene                          | идл<br>ид/I        | 0,5                      | < 0,5         | n.e.                 | < 0,5                | n.e.       | n.e.       | n.e.       | < 0,5      | n.e.         | n.e.       | n.e.       | n.e.       |
| o-Xilene                             | μqn<br>μq/l        | 0,5                      | < 0,5         | n.e.                 | < 0,5                | n.e.       |            | n.e.       | < 0,5      | n.e.         | n.e.       | n.e.       | n.e.       |
| MTBE                                 | деп<br>Деди        | 0,5                      | < 0.5         | n.e.                 | ₹0,5                 | n.e.       | n.e.       | n.e.       | < 0,5      | n.e.         | n.e.       | n.e.       | n.e.       |
| m,p-Xilene                           | идл<br>ид/I        | 0,5                      | < 0,5         | n.e.                 | < 0,5                | n.e.       | n.e.       | n.e.       | < 0,5      | n.e.         | n.e.       | n.e.       | n.e.       |
| IDROC. TOT.                          | дел<br>це/I        | 0,5                      | 10,5          | n.c.                 | (111                 | n.c.       | n.c.       | n.c.       | (111       |              | n.e.       | n.e.       |            |
| IPA                                  | дап<br>дай         | s                        | H.R.          |                      |                      | H.R.       |            |            |            | H.R.         |            |            | 1.7.       |
| Pesticidi                            | μqn<br>μq/l        | 0,5 (soomatoria)         | H.R.          | 8.7.                 | B.F.                 | H.R.       | 8.5.       | 8.5.       | 8.7.       | H.R.         | 8.5.       | 8.7.       | 8.7.       |
| PCB                                  | <u>дап</u>         | 0,5 [500matoria]<br>0.01 | n.k.<br><1,15 | 8.7.                 | 4 1,85               | п.к.       | 8.7.       | n.e.       | n.e.       | n.e.         |            | 8.7.       | 8.7.       |
| * limite previsto del D Las 30/09 (m |                    |                          | 10,02         | 8.7.                 | 10,00                | B.F.       | 1.7.       | 11.4.      | 11.4.      | 11.4.        | 1.7.       | 8.7.       | 1.7.       |

<sup>\*</sup> limite previsto dal D.Lqs.30/03 (monitoraggio della falda)

n.e.: non esequito

<sup>&</sup>quot; limite previsto dal D.Lqs.31/01 (acque potabili)





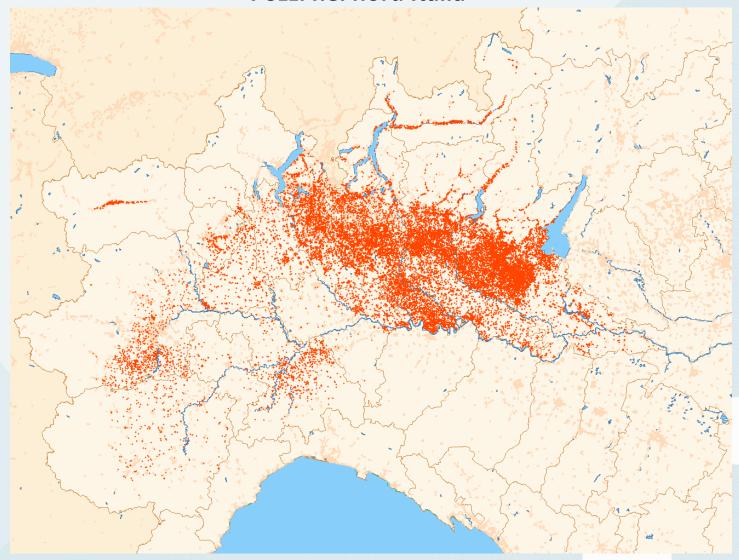
#### Criticità del territorio valdostano

- Falda "superficiale"
- Assenza di strati superficiali impermeabili di entità considerevole
- Coesistenza nel fondovalle di aree urbaneindustriali e captazioni idropotabili



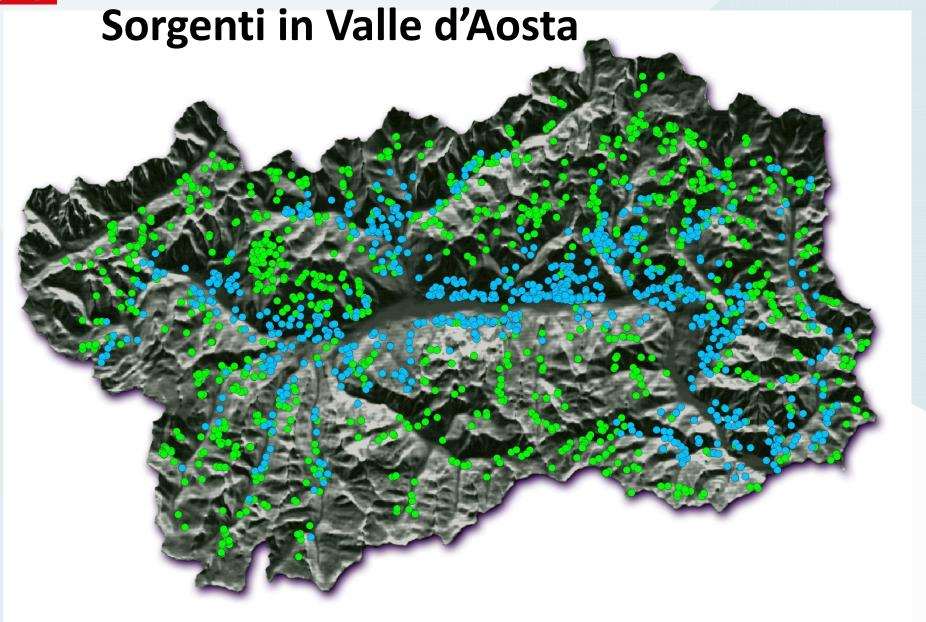
Sversamenti superficiali, serbatoi interrati, scorie o rifiuti interrati




Precipitazioni e conseguente dilavamento



Contaminazione del terreno profondo e della falda




#### Pozzi nel nord Italia



2



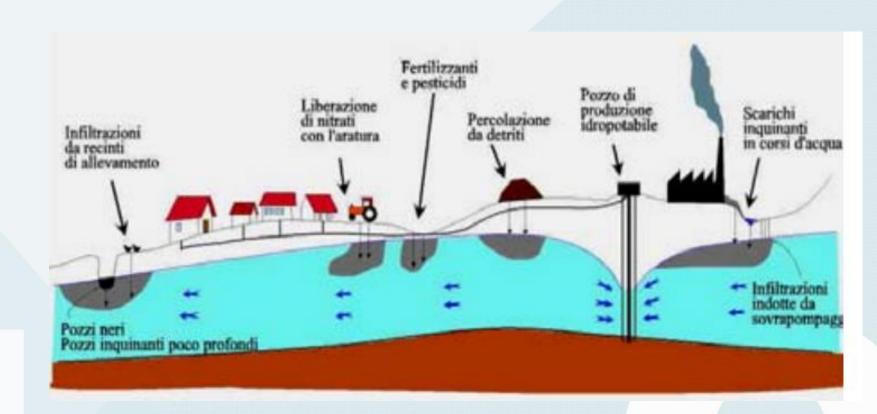


Piana di Donnas - Pont Saint Martin



Piana di Morgex

Piana di Aosta


Principali corpi idrici sotterranei valdostani



Piana di Verrès - Issogne -Arnad

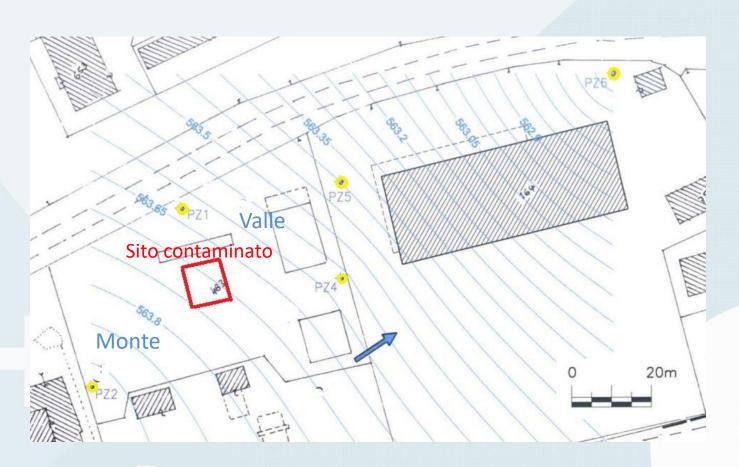


### «Pressioni» sulle acque sotterranee





### «Vulnerabilità» acquifero libero e confinato

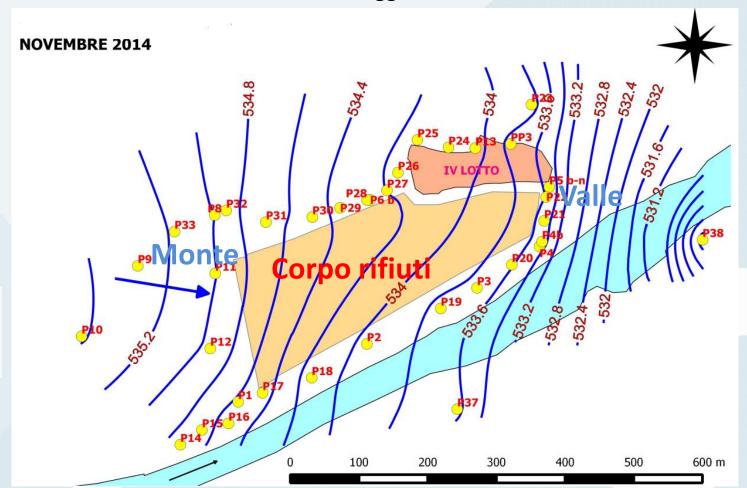



Acquifero libero: molto vulnerabile sversamenti in superficie che possono infiltrarsi sono alla falda

Acquifero Confinato: naturalmente protetto

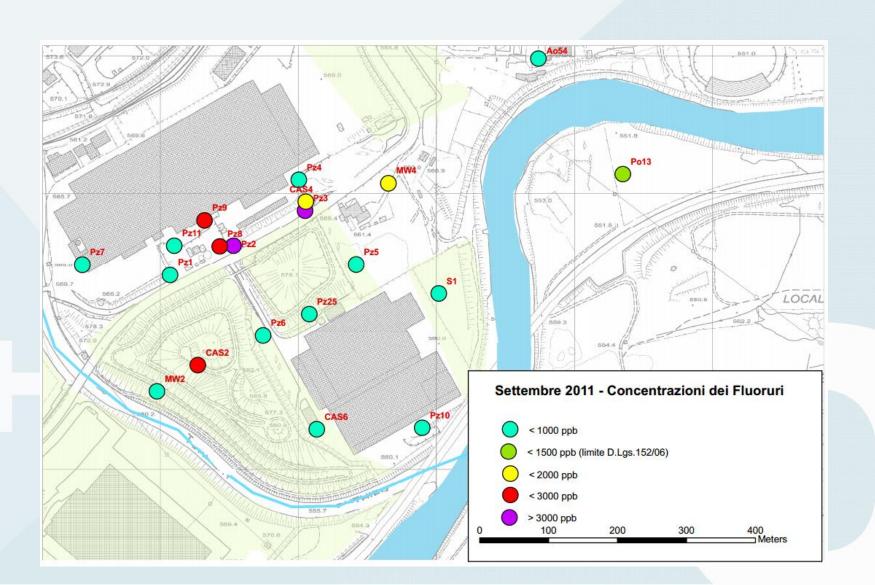


# Il monitoraggio idrogeologico della contaminazione: confronto «monte/valle»



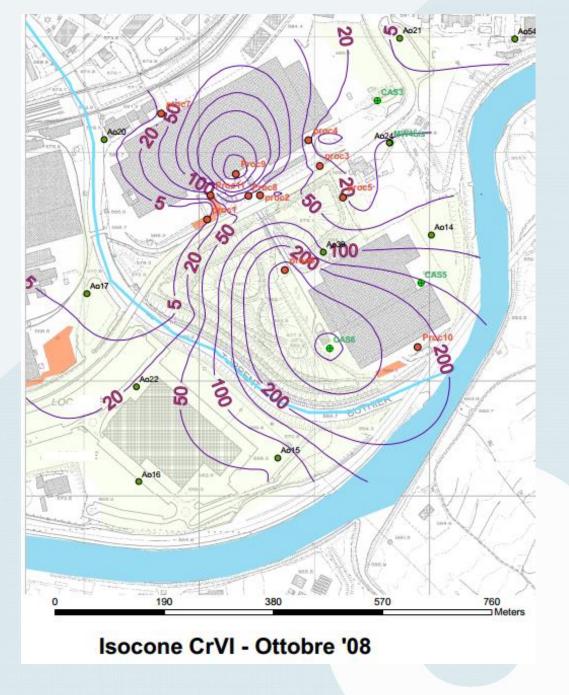

2




## Il monitoraggio idrogeologico della contaminazione: confronto «monte/valle»

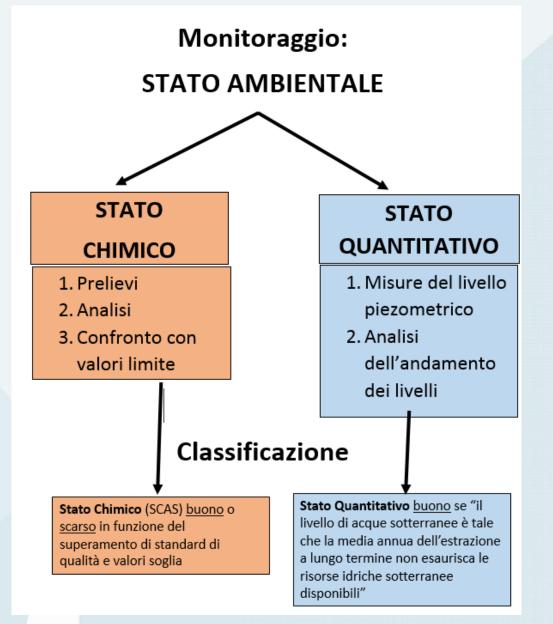
Discariche: «anello» di monitoraggio






### Carte della contaminazione della falda puntuali

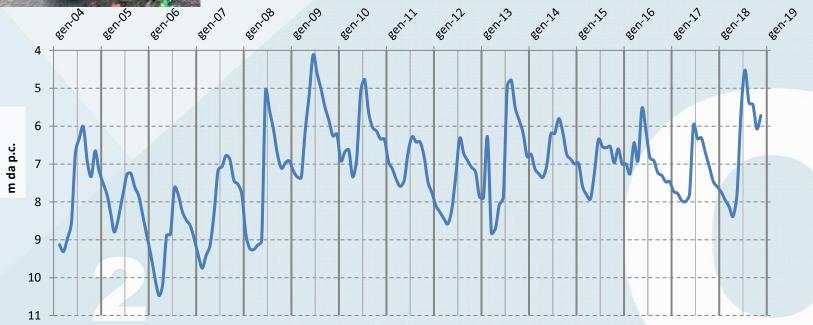





Carte delle isoconcentrazioni della falda

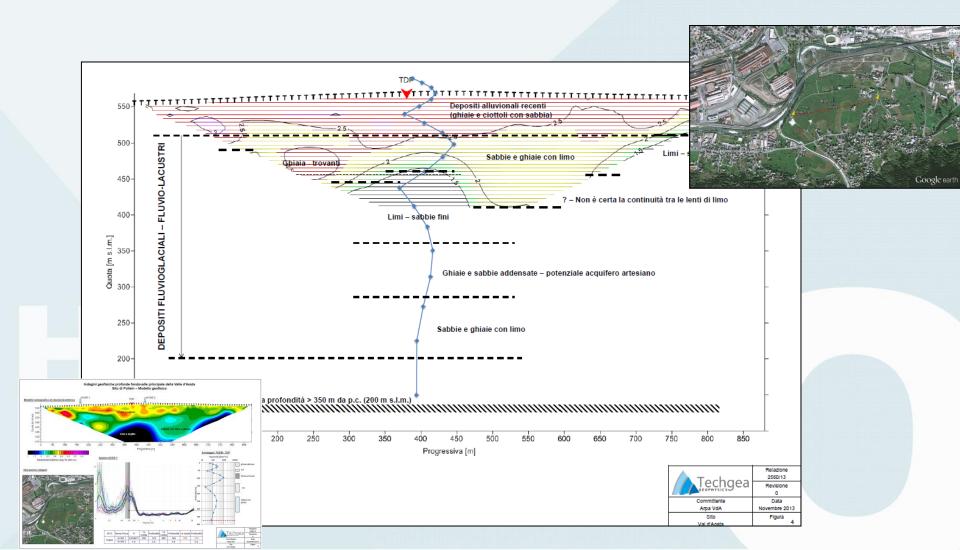


2







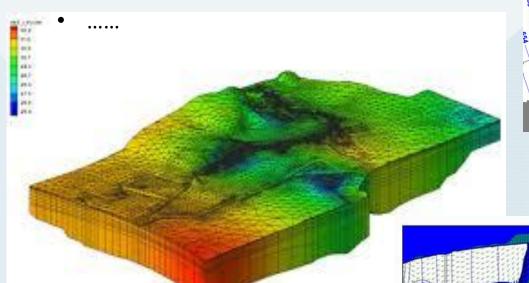


## Monitoraggio quantitativo: misura periodica della soggiacenza volta a valutare abbassamenti anomali dovuti ad uno sovrasfruttamento della risorsa

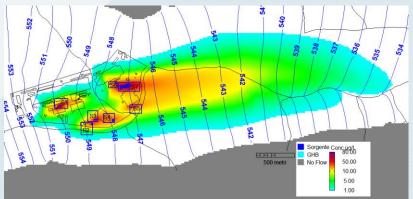




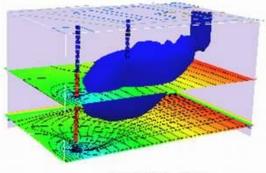


#### **Indagini indirette**




#### Modellistica


#### È possibile simulare :

- l'effetto di nuovi pozzi di prelievo
- la diffusione in falda di inquinanti
- Gli effetti dei cambiamenti climatici





Contaminant distribution



3D visualization

2