Gestione e controlli della strumentazione per la misura di NOx in aria ambiente

G. Kerschbaumer - C. Tarricone

Introduzione alle misure di NO2: Principio di funzionamento dell'analizzatore

metodo di riferimento: Chemiluminescenza

$$NO + O_3 -> NO_2 * + O_2$$

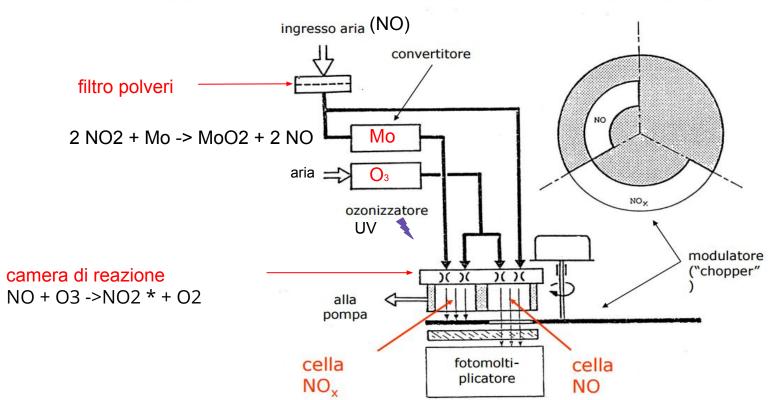
dove hy rappresenta un fotone in una banda estesa fra 590 e 3000 nm e con il massimo a ~1200 nm. Poichè l'efficienza di rivelazione è nettamente migliore nel visibile, negli strumenti convenzionali la rivelazione avviene nell'intervallo 600-900 nm, mediante l'utilizzo di un filtro.

e NO2?

Riduzione catalitica di NO2 a NO

NO2
$$\rightarrow$$
 convertitore \rightarrow NO (NO2 + Mo \rightarrow MoO2 + 2 NO)

Catalizzatore: molibdeno (T = 240 - 350 °C).


L'NO2 ridotto in NO viene sommato all' NO presente in aria e determinato per chemiluminescenza

Lo strumento misura alternativamente a intervalli di pochi secondi:

- •NO presente in aria
- NO+NO2 (ridotto a NO) = NOx.

La differenza tra NOx e NO fornisce il valore di NO2.

Analizzatore a chemiluminescenza per NO_x

Ogni passaggio è importante per la misura: i controlli di qa/qc

- taratura allo zero
- taratura del canale NO allo SPAN
- taratura del canale NOx allo SPAN
- efficienza del convertitore (GPT)
- linearità (lack of fit)
- bilanciamento dei canali NO e NOx

La norma tecnica EN14211:2012 - 9.4 Ongoing quality assurance/quality control La linea guida di ISPRA 108:2014 - 6.1.2 Attività periodiche di controllo della qualità

I controlli di qa/qc sono essenziali per ottenere dati **tracciabili e accurati** di qualità dell'aria

e

(per verificare che l'incertezza di misura sia entro i limiti fissati.)

Taratura dell'analizzatore

(EN14211:2012 par.9.5.1) (ISPRA 108/2014 par.6.1.2.2)

Quando?

- Almeno ogni 3 mesi
- dopo ogni riparazione

Criteri di azione

 quando il drift rispetto allo zero o rispetto allo span superano la tolleranza stabilita dall'utente

La concentrazione per lo span raccomandata è pari al 70-80% del range di certificazione del canale
 NO (generalmente 0-1000 ppb)

Condizioni sito specifiche: se le concentrazioni massime di NOx misurate in un dato sito sono significantemente inferiori al max del range di certificazione (inferiori del 20%)

può essere ridotta la concentrazione con cui effettuare la taratura e conseguentemente gli span checks, le verifiche di linearità i test di efficienza del convertitore

Taratura dell'analizzatore

- il gas di taratura deve essere inserito prima del filtro di particolato per verificare ed eventualmente correggere per la contaminazione dovuta al filtro
- E' necessario effettuare 10 misure individuali sia allo zero che allo span e deve essere calcolata la deviazione standard per il calcolo della ripetibilità

Ozero ≤ 1ppb

Gas di Taratura

(EN14211:2012 par.9.5.2 e tab.3) (ISPRA 108/2014 par.6.1.2.1)

per generare i gas di taratura vi sono differenti metodi

(tabella 3 della EN15211:2012):

- Bombole NO in N₂ (EN ISO 6142 EN ISO 6143) o NO₂ in aria sintetica
- Tubi a permeazione per generazione di NO2 (EN ISO 6145-10)
- Diluizione dinamica di NO o NO2 ad alta concentrazione (ppm) con aria di zero (EN ISO 6145-6 EN ISO 6145-7)
- (diluizione statica)
- GPT conversione di aria contenente NO in NO2 mediante ozono

Gas di taratura per lo zero e per lo span

- deve essere riferibile a standard internazionali
- massima incertezza permessa è pari al 5% con un livello di confidenza al 95%
- il gas di zero non deve dare una lettura maggiore del detection limit
- i gas devono essere <u>differenti</u> da quelli usati per fare gli span checks

CHECKS: zero e span

(EN14211:2012 par.9.6.1.1) (ISPRA 108/2014 par.6.1.2.1)

Gas di di zero e di span

- bombole
- generatore esterno
- all'interno dell'analizzatore
- 70-80% del range di certificazione dell'analizzatore o del range definito dall'utente.
- stabilità del gas deve essere verificata ogni 6 mesi con l'uso di gas di riferimento riferibili a standard riconosciuti (inter)nazionalmente.

Gas di riferimento zero e di span

(EN14211:2012 par. 9.6.1 e tabella 4)

• i gas di riferimento (NO e NO2) con i quali vengono controllati semestralmente i gas per i checks devono rispettare le richieste di purezza (tabella 4 EN:14211)

Inquinante	Concentrazione
CO2	≤ 4.0 ppb
03	≤ 2.0 ppb
NH3	≤ 1.0 ppb
Water vapour	≤ 150 ppm
NO2	≤ 1.0 ppb

(EN14211:2012 par. 9.6.1)

Gas per i controlli di zero e di span

- gas di zero utilizzato per i **controlli** di zero non deve superare il detection limit
- il gas utilizzato per i **controlli** di span non deve differire per più del 5% dell'ultimo valore certificato.
- la purezza dei **gas utilizzati per i controlli** <u>POSSONO</u> avere la purezza dei gas di riferimento, ma sono anche accettabili richieste meno stringenti sul contenuto di CO, ammoniaca e vapore d'acqua.
- $NO_2 \le 1.0$ ppb e $O_3 \le 1.0$ ppb

(rimarrebbe da dimostrare che le eventuali impurezze non siano rilevanti ai fine dell'incertezza

complessiva)

detection limit: LOD = $3.3*(\sigma_z/B)$

 $\sigma_{_{7}}$ deviazione standard a zero

B^ccoeff angolare della retta di taratura calcolata mediante regr lineare (annex A en14211:2012)

(EN14211:2012 par. 9.6.1)

Performance dei controlli di zero e span

- attendere stabilizzazione dell'analizzatore, cercando di raggiungere il 75% dei dati nell'ora (check a cavallo di 2 medie orarie)
- se possibile il gas di zero e di span devono passare attraverso il filtro per il particolato.

$$\Delta xz = |Zi - Zo| \le 4ppb$$

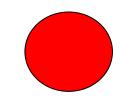
 $\Delta xs = (|Si - So| - \Delta xz)/So x100 \le 5\%$

 Tarare nuovamente l' analizzatore

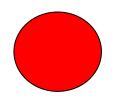
controlli periodici (ZERO):

- bombola di aria di zero
- generatore di aria di zero
- cartucce filtranti

Bombola di aria di zero


Vantaggi:

- facile da installare
- ottima stabilità a lungo termine
- senza manutenzione


Svantaggi:

- poca aria di zero a disposizione
- costi elevati
- trasporto bombole ADR

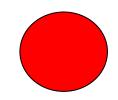
Consigliato per la <u>taratura</u> di ZERO

Generatore di aria di zero

Vantaggi:

- tanta aria di zero a disposizione
- buona stabilità a lungo termine (comunque da verificare periodicamente con campione di taratura)
- il sistema lavora in pressione
- utilizzabile per alimentare calibratori / diluitori

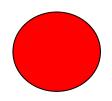
Svantaggi:


- costi elevati in fase di acquisto
- sistema voluminoso
- verifica periodica dell'efficienza dei filtri e dell'umidità

Consigliato per la verifica periodica (giornaliera) dello zero

Nota: si consiglia di usare sistemi automatici (es. permapure, heatless dryer) per asciugare l'aria compressa PRIMA del serbatoio di pressione

• si consiglia di monitorare in continuo il punto di rugiada dell'aria di zero con un sensore adequato


Filtro di aria di zero (cartucce)

Vantaggi:

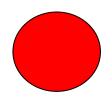
- bassi costi in fase di acquisto
- sistema poco voluminoso
- tanta aria di zero a disposizione
- a prima vista poca manutenzione (con consumi alti bisogna cambiare spesso il filtro usato per eliminare l'umidita' del campione <u>all'ingresso del sistema</u>)
- comunque da verificare periodicamente con campione di riferimento
- buona stabilità a lungo termine a basso consumo (solo cambiando periodicamente il filtro usato per eliminare l'umidita' del campione all'ingresso del sistema)

Filtro di aria di zero (cartucce)

Svantaggi:

- il sistema lavora in depressione:
 - possibili perdite del sistema sui raccordi con inquinamento dell'aria di zero
 - gli analizzatori devono lavorare in depressione (situazione non corrisponde alla situazione di lavoro normale)
- spesso lunghi tempi di passivazione del filtro dopo il rinnovamento dei materiali filtranti
- verifica periodica dell'efficienza filtri e dell'umidità

Consigliato **solo per la verifica** dello zero in mancanza di altri sistemi più affidabili (bombola / generatore di aria di zero)


Nota: si consiglia di monitorare in continuo il punto di rugiada dell'aria di zero con un sensore adeguato

Standard per controlli e taratura di span

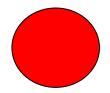
controlli periodici (SPAN):

- bombola bassa concentrazione NO
- bombola alta concentrazione + diluitore (NO)
- tubo a permeazione NO₂

Bombola bassa concentrazione

Vantaggi:

- facile da installare
- facile da utilizzare
- buona stabilità anche oltre il termine di garanzia solo se senza NO2
- senza manutenzione


Bombola bassa concentrazione

Svantaggi:

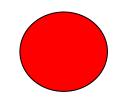
- poco gas di span a disposizione
- costi elevati
- trasporto bombole ADR
- possibile formazione di NO2 all'interno della bombola
- massima attenzione a non inquinare la bombola durante il montaggio del riduttore di pressione e durante l'uso
- scelta di materiali adeguati (riduttori, tubi, raccordi, ecc.)
- taratura della strumentazione con NO in N2: non uguale alla situazione normale di misura (NO in aria ambiente)
- possibile differenza tra taratura con diluitore di NO in aria
- possibile apnea del convertitore di NOx (per N2)

Consigliato per la **taratura** dello SPAN

Bombola alta concentrazione + diluitore

Vantaggi:

- tanto gas span a disposizione
- ottima stabilità a lungo termine se senza NO2
- utilizzabile per tutti i tipi di verifica/taratura (span, ripetibilità, GPT, Lack of Fit, ecc.)

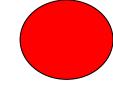

• Svantaggi:

- costi elevati in fase di acquisto (diluitore + generatore aria)
- sistema voluminoso (bombola, diluitore + generatore aria)
- necessita di un generatore di aria di zero con adeguata portata e pressione
- verifica periodica della linearità, stabilità e ripetibilità dei MFC

nota: attenzione alla scelta di materiali adeguati (riduttori, tubi, raccordi, ecc.)

•

Tubo a permeazione NO₂

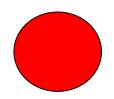

Vantaggi:

- a prima vista poca manutenzione e costi bassi
 bassa temperatura = concentrazioni basse di NO2 con conseguente vita lunga dei tubi a permeazione
- semplice da usare
- possibilità di ottenere diverse concentrazioni

ATTENZIONE:

- concentrazione da verificare periodicamente con analizzatore di riferimento
- utilizzabile come standard primario (es verificato con gli adeguati sistemi riferibili):
 - pesato periodicamente su bilancia certificata
 - taratura flusso
 - taratura temperatura fornetto
 - verifica aria di zero

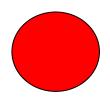
Tubo a permeazione NO2



Svantaggi:

- NON é possibile tarare il canale di NO
- NON é possibile tarare il canale di NOX
- NON é possibile effettuare il test della efficienza del convertitore di NOX
- alti costi in fase di acquisto (permeatore, generatore di aria di zero + tubo di permeazione)
- sistema voluminoso (permeatore + generatore di aria di zero)
- stabilitá della temperatura nel forno (T_int della stazione alta puó creare problemi di stabilità al permeatore)
- contenuto dei tubi di permeazione = $N_2O_4 \rightarrow$ permea e si decompone in NO2 (98% 99%) e NO (ca. 1%-2%)
- verso fine vita la concentrazione permeata non é stabile un cambio della temperatura del forno di permeazione di 1°C comporta una variazione della concentrazione di ca. 10%!!

Utilizzabile per la **sola verifica di funzionamento** dell'analizzatore NOx


Nota: si consiglia di monitorare in continuo il punto di rugiada dell'aria di zero con un sensore adeguato

Quanto é importante tarare bene la strumentazione?

- taratura allo zero
- taratura del canale NO allo SPAN
- taratura del canale NOx allo SPAN

Bombola tarata (800 ppb)

Concentrazione bombola come da certificato	NO	NO2	NOx
	800	0	800
Fattore K di taratura dell'analizzatore	1		1

		•			
		Concentrazione effettiva	NO	NO ₂	NOx
		Valore esatto	800	0	800
		Fattore K di taratura dell'analizzatore	1		1
Concentrazioni presenti in ambiente			concentrazio	oni misurati da	ll'analizzatore
5	1100		5	1100	110

NO	NO2	NOx	NO	NO2	NOx
700	100	800	700	100	800
400	100	500	400	100	500
200	100	300	200	100	300
100	100	200	100	100	200
0	100	100	0	100	100
	-		-		

Bombola dichiarata 800ppb (760 ppb effettivi)

Concentrazione bombola come da certificato	NO	NO ₂	NOx
	800	0	800
Fattore K di taratura dell'analizzatore	1		1

Concentrazione effettiva	NO	NO ₂	NOx
5% in meno	760	0	760
Fattore K di taratura dell'analizzatore	1,053		1,053

concentrazioni presenti in ambiente

concent	trazio	ni m	isurat	i dal	l'ana	lizzat	tore

NO	NO2	NOx	NO	NO2	NOx
700	100	800	736,8	105,3	842,1
400	100	500	421,1	105,3	526,3
200	100	300	210,5	105,3	315,8
100	100	200	105,3	105,3	210,5
0	100	100	0,0	105,3	105,3

Bombola dichiarata 800ppb (840 ppb effettivi)

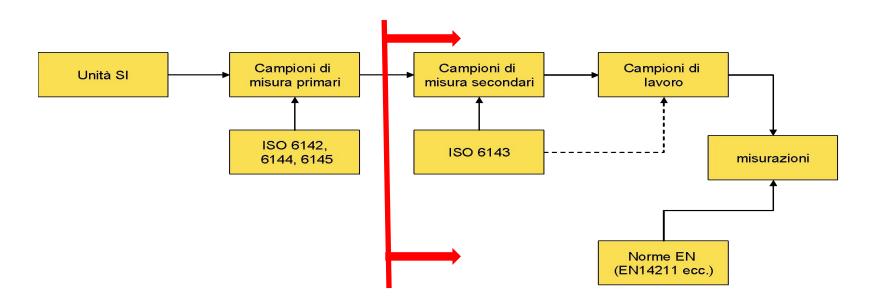
Concentrazione bombola come da certificato	NO	NO ₂	NOx
	800	0	800
Fattore K di taratura dell'analizzatore	1		1
		•	•

	concentrazione effettiva			NO ₂	NOx
		5% in più	840	0	840
		Fattore K di taratura dell'analizzatore	0,952		0,952
	concentrazion	ni presenti in ambiente	concentrazion	ni misurati da	ll'analizzatore
NO	NO ₂	NOx	NO	NO2	NOx
700	100	800	666,7	95,2	761,9
400	100	500	381 N	05.2	476.2

		5% III piu	040	U	040
		Fattore K di taratura dell'analizzatore	0,952		0,952
concentrazioni presenti in ambiente			concentrazio	ni misurati da	ll'analizzatore
NO	NO2	NOx	NO	NO2	NOx
700	100	800	666,7	95,2	761,9
400	100	500	381,0	95,2	476,2
200	100	300	190,5	95,2	285,7
100	100	200	95,2	95,2	190,5
0	100	100	0,0	95,2	95,2

Tavola rotonda su richieste per fornitura gas e

certificati di taratura


EN14211:2012

Ambiti di certificazione e misura

- NO: fino a 1200 μ g/m³ (\cong 962 ppb)
- NO₂ fino a 500 μ g/m³ (\approx 262 ppb)

Catena di riferibilità: norme utilizzate per la produzione, la riferibilità tra campioni e le misurazioni.

(EN14211:2012 par. 8.4.14)

Efficienza del convertitore

- L'efficienza del convertitore deve essere verificata almeno ogni anno
- 2 livelli di concentrazione 50% e 95% del massimo range di certificazione per la misura di NO2 (circa 260 ppb)
- tra le due concentrazioni di NO2 "ripulire" lo strumento con aria di zero per almeno 30min
- Possibile sia in stazione (GPT portatile) sia in laboratorio (GPT fissa)

note

- si consiglia GPT anche prima della manutenzione annuale
- attenzione ai tempi di passivazione dopo il cambio del convertitore NOx!

Efficienza del convertitore GPT (Gas Phase Titration)

- Prima di effettura la GPT é assolutamente necessario verificare il buon funzionamento dell 'analizzatore.
- È molto importante che il rapporto di diluizione dei Mass flow controller durante tutta la fase di GPT rimanga invariato!
- Nota GK: si può utilizzare anche una concentrazione leggermente diversa da quella indicata (es. 500 NO, 135 e 260 ppb di NO2)]

Efficienza del convertitore

definizione MISURA INDIVIDUALE: misurazione mediata su un intervallo di tempo pari al tempo di risposta dell'analizzatore

Sequenza EN14211:2012

- 1. tarare entrambi i canali con NO con una concentrazione compresa tra 480-770 ppb
- 2. introdurre ~480ppb di NO (50% del max range di certificazione del NO) senza NO2 fino al segnale stabile (almeno 4 tempi di risposta e poi si registrano 4 misure individuali)
- 3. Aggiungere O₃ ~131 ppb (50% del max range di certificazione del NO₂) e si hanno ~480 ppb di NO_x di cui ~131 ppb di NO₂ (almeno 4 tempi di risposta e poi si registrano 4 misure individuali)
- 4. interrompere la generazione di O3
- 5. Far flussare aria di zero per 30 min e successivamente nuovamente 480 ppb di NO
- 6. Aggiungere O₃ ~248 ppb (95% del max range di certificazione del NO₂) ____ e si hanno ~480 ppb di NO_x di cui ~248 ppb di NO₂
- 7. interrompere la generazione di O₃ fino al segnale stabile (circa 12 min) ~480 ppb di NO senza NO₂

Efficienza del convertitore

Calcolo dell'efficienza del convertitore

$$E_{c}=1-\frac{C_{NOx, iniz}-C_{NOx,}}{C_{NO, iniz}-C_{NO, fin}} \times 100$$

C_{NOx, iniz} media di 4 misure individuali di NOx alla concentrazione iniziale

C_{NOx. fin}media di 4 misure individuali di NOx alla concentrazione finale

 $C_{NO,\,iniz}$ media di 4 misure individuali di NOx alla concentrazione iniziale

C_{NO fin}media di 4 misure individuali di NOx alla concentrazione finale

definizione MISURA INDIVIDUALE: misurazione mediata su un intervallo di tempo pari al tempo di risposta dell'analizzatore

Bisogna considerare il valore di efficienza inferiore

Concentrazioni di NO/NO2 usate per la GPT

	Zero (ppb)	Span (ppb)	50% del range di certificazione (solo NO)	50% del range di certificazione (NO) 50% del range di certificazione NO2	50% del range di certificazione (solo NO)	50% del range di certificazione (NO) 95% del range di certificazione NO2	50% del range di certificazione (solo NO)
NO	0	800	481	481	481	481	481
NO2	0	800	0	131	0	249	0
NOx	0	800	481	481	481	481	481

Range di certificazione	NO	NO2
	962 ppb	262 ppb

Concentrazioni di NO/NO2 misurate durante la GPT

(con efficienza del convertitore a 100%)

	Zero	Span	solo NO test ripetibilità	NO + NO2 GPT fase 1	solo NO GPT fase 1	NO + NO2 GPT fase 1	solo NO GPT fase 1
NO	0 ppb	800 ppb	481 ppb	350 ppb	481 ppb	232 ppb	481 ppb
NO2	0 ppb	800 ppb	0 ppb	131 ppb	0 ppb	249 ppb	0 ppb
NOx	0 ppb	800 ppb	481 ppb	481 ppb	481 ppb	481 ppb	481 ppb

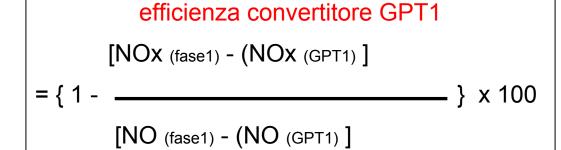
- 1. Prima della GPT va verificato / tarato lo Zero e lo Span
- Nota GK: Per le GPT eseguite nelle stazioni di misura é consigliabile fare la prima verifica usando gli standard di taratura Zero /
 Span presenti nella stazione e usata durante l'anno per la taratura dell'analizzatore senza cambiare i K zero/span!
- 3. Questo da la possibilità di confrontare lo standard "normale" con quello della GPT, dalla sua parte giá verificato presso il centro di taratura ARPA.

Concentrazioni di NO/NO2 misurate durante la GPT

(con efficienza del convertitore a 100%)

	Zero	Span	solo NO test ripetibilità	NO + NO2 GPT fase 1	solo NO GPT fase 1	NO + NO2 GPT fase 2	solo NO GPT fase 2
NO	0 ppb	800 ppb	481 ppb	350 ppb	481 ppb	232 ppb	481 ppb
NO2	0 ppb	800 ppb	0 ppb	131 ppb	0 ppb	249 ppb	0 ppb
NOx	0 ppb	800 ppb	481 ppb	481 ppb	481 ppb	481 ppb	481 ppb

Per garantire la stabilità del sistema GPT e dell'analizzatore prima dell'inizio e dopo la GPT va misurato una concentrazione di NO (ca.481 ppb).


La differenza delle 2 concentrazioni deve essere < 1%!

Concentrazioni di NO/NO2 misurate durante la

GPT (con efficienza del convertitore a 100%)

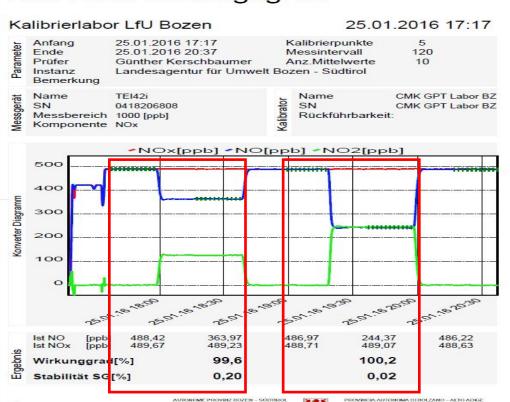
Concentra- zioni per la GPT	Zero	Span	solo NO test ripetibilità	NO + NO2 GPT fase 1	solo NO GPT fase 1	NO + NO2 GPT fase 2	solo NO GPT fase 2
NO	0 ppb	800 ppb	481 ppb	350 ppb (NO (GPT1))	481 ppb (NO (fase1))	232 ppb	481 ppb
NO2	0 ppb	800 ppb	0 ppb	131 ppb	0 ppb	249 ppb	0 ppb
NOx	0 ppb	800 ppb	481 ppb	481 ppb (NOx (GPT1))	481 ppb (NOx (fase1))	481 ppb	481 ppb

Si parte con la fase GPT1 (NO = 481 ppb + NO2 = 131 ppb) **Attenzione**: per il calcolo dell'efficienza serve solo NO ed NOx!

Concentrazioni di NO/NO2 misurate durante la GPT (con efficienza del convertitore a 100%)

Concentra- zioni per la GPT	Zero	Span	solo NO test ripetibilità	NO + NO2 GPT fase 1	solo NO GPT fase 1	NO + NO2 GPT fase 2	solo NO GPT fase 2
NO	0 ppb	800 ppb	481 ppb	350 ppb (NO (GPT1))	481 ppb (NO (fase1))	232 ppb (NO (GPT2))	481 ppb (NO _(fase2))
NO2	0 ppb	800 ppb	0 ppb	131 ppb	0 ppb	249 ppb	0 ppb
NOx	0 ppb	800 ppb	481 ppb	481 ppb (NOx (GPT1))	481 ppb (NOx (fase1))	481 ppb (NOx (GPT2))	481 ppb (NOx (fase2))

Si prosegue con la fase GPT2 (NO = 481 ppb + NO2 = 249 ppb)


Attenzione: per il calcolo dell

'efficienza serve solo NO ed NOx!

Esempio di un protocollo GPT

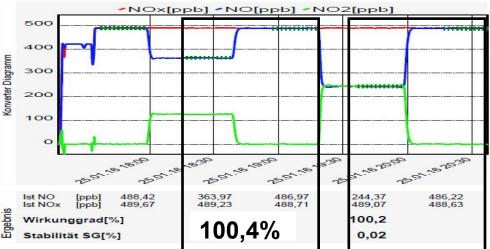
Konverterwirkungsgrad

calcolato secondo la norma!

29. Landesagoniur für Umwell 29.8. Labor für physikalische Chemie 29. Agenzia provinciale per l'ambiente 29.8. Laboratorio di chimica fisica

- ogni concentrazione acquisita 24 minuti
- Efficienza tra 99,6% e 100,2%
- Sull'analizzatore va impostato un 'efficienza del 99,4%
- PERCHÈ???
- L'efficienza impostata all'interno dell' analizzatore durante la GPT é di 99,6%
- \rightarrow 99,6% / 100,2% = 99,4%
- Perché non si sceglie l'efficienza inferiore (99,6%)?

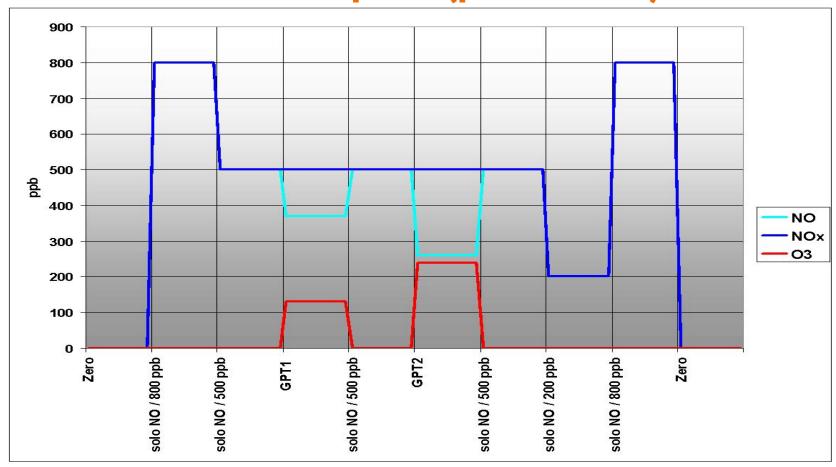
Esempio di un protocollo GPT


Konverterwirkungsgrad

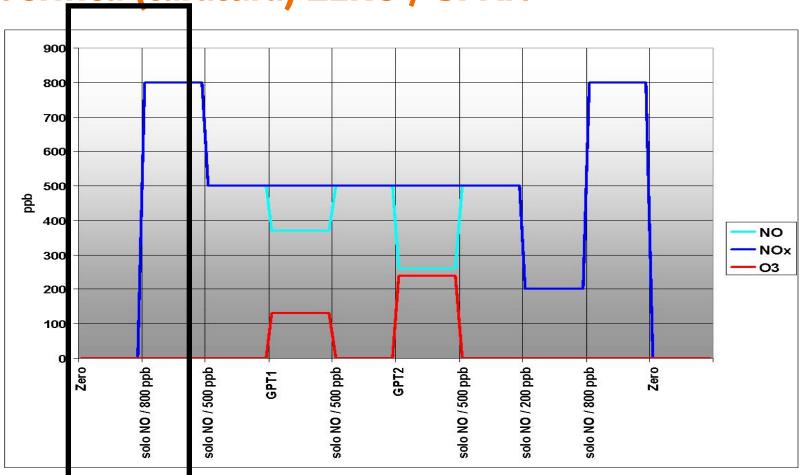
consiglio di calcolo

Kalibrierlabor LfU Bozen

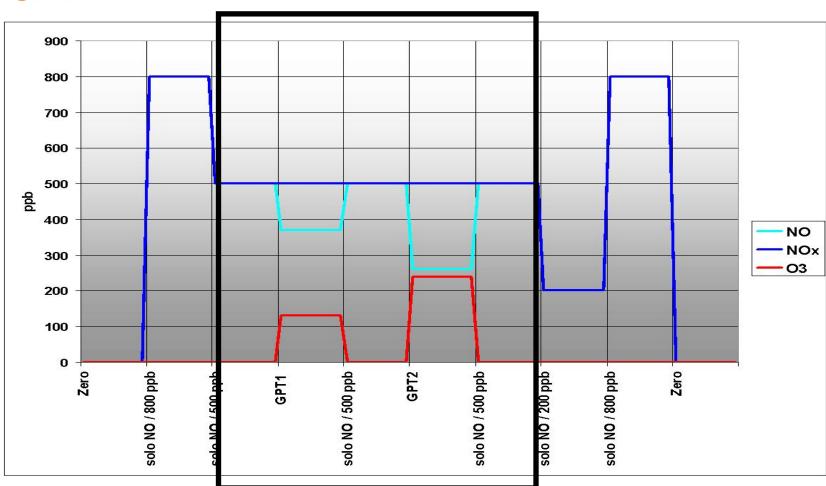
25.01.2016 17:17

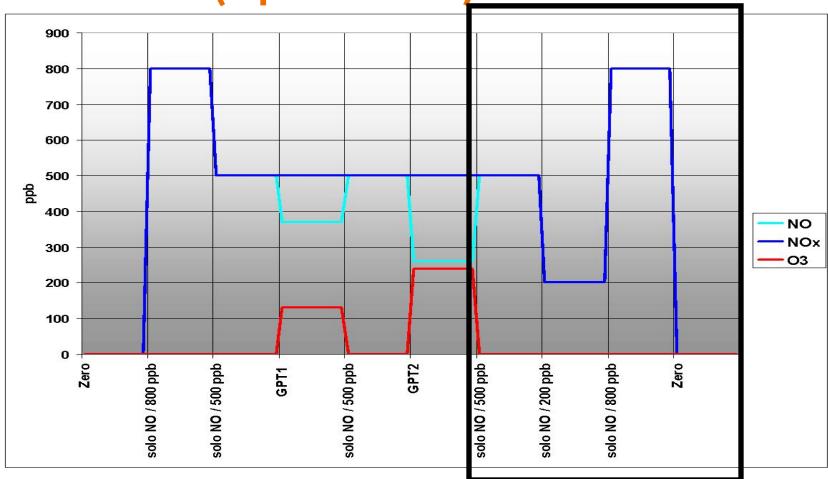


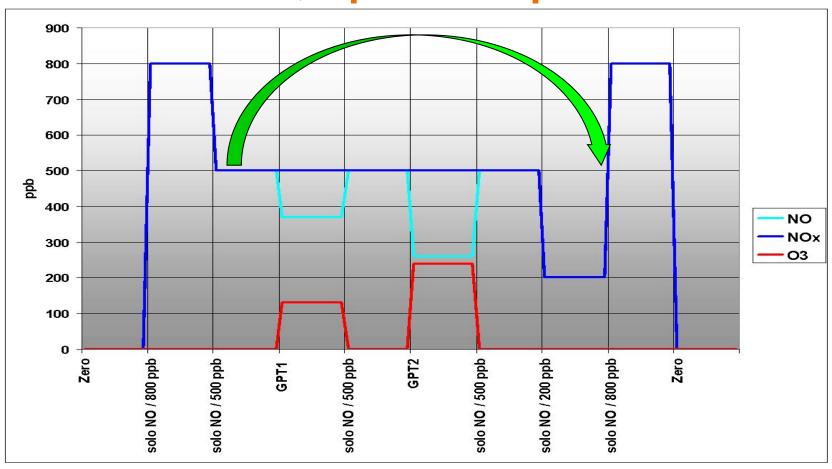
- ogni punto di per la media della GPT dura 12 minuti
 - Efficienza tra 99,6% e 100,2%
- Sull'analizzatore va impostato un 'efficienza del 99,4%
- PERCHÈ???
- L'efficienza impostata all'interno dell'analizzatore durante la GPT é di 99.6%
- \rightarrow 99,6% / 100,2% = 99,4%
- Perché non si sceglie l'efficienza inferiore (99,6%) ?

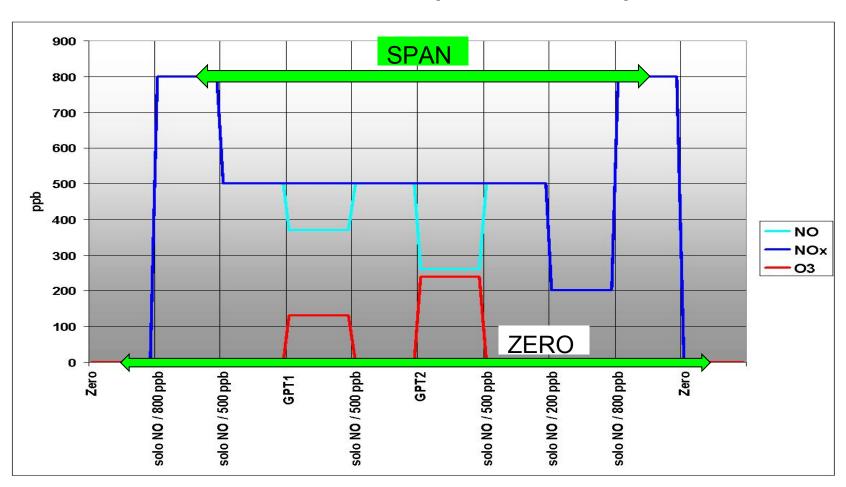

combinazione per più controlli in contemporanea:

- 1. zero-span
- 2. gpt
- 3. lack of fit
- 4. verifica stabilità


Combinazione GPT + pLoF (piccolo LoF)


Verifica (taratura) ZERO / SPAN


GPT


Piccolo LoF (3 punti + zero)

Verifica stabilitá / ripetibilità span GPT

verifica stabilitá / ripetibilità zero / span

Consigli pratici per la GPT (Gas Phase Titration)

- •la sostituzione del convertitore oltre ad essere **costosa** comporta spesso nel primo periodo un ulteriore **calo dell'efficienza**
- •L'esperienza ha dimostrato, che nei primi giorni di funzionamento di un convertitore nuovo l'efficienza effettiva varia tra 90% e 95% e aumenta per diverse settimane.
- •Anche dopo un mese il convertitore nuovo statisticamente puó non avere ancora raggiunto un'efficienza del 100%.
- •Pertanto é consigliabile effettuare più di una verifica GPT e ripeterla almeno a un mese di distanza dalla sostituzione del convertitore

consigli pratici: GPT stress test

- •é possibile sottoporre gli analizzatori di NOx a uno "stress-test", facendo una GPT a ca. 800 ppb di NOx e con una concentrazione di NO2 a ca. 500 ppb.
- •In base allo stato del convertitore l'efficienza sará piú o meno alta
- •se l'efficienza tende a diminuire il convertitore è a fine vita e conviene sostituirlo
- •in questo modo facendo una statistica sui propri analizzatori si riesce a capire se il convertitore reggerà ancora un anno o meno.

Controlli annuali: Lack of fit

(EN14211:2012 par. 9.6.2 annex A)

Lack of fit o verifica di linearità

minimo alle seguenti concentrazioni: 0% - 60% - 20% - 95% del massimo del range di certificazione dell'analizzatore (canale NO)

o del range definito dall'utilizzatore

- ▼ concentrazione almeno <u>2 letture</u> individuali
- a ciascun cambio di concentrazione, attendere 4 tempi di risposta prima di effettuare una nuova misura

Frequenza

- entro 1 anno dalla prima installazione
- entro un anno dal test di linearità è tra il 2-4%
- ogni 3 anni se ≤ 2,0%
- dopo riparazione

Lack of fit

Criterio di azione

- ≥ 4% massimo residuo dalla funzione di regressione lineare per le concentrazioni >0
- residuo a zero ≤ 5,0 ppb

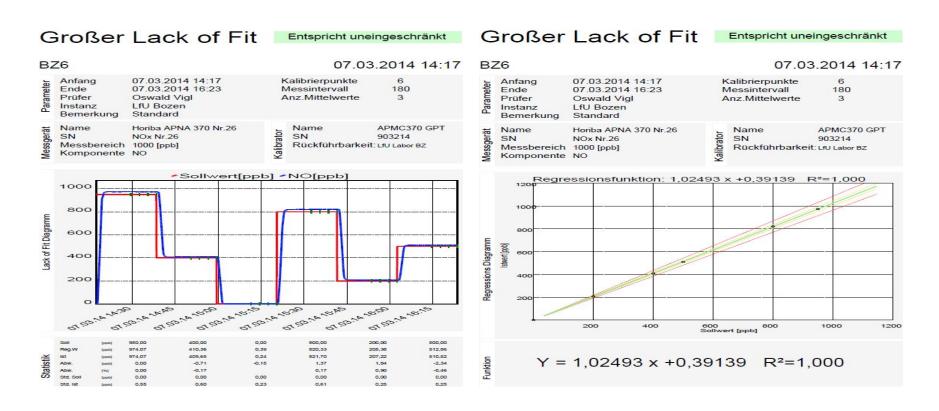
nota

il test di linearità può essere effettuato in campo o in laboratorio

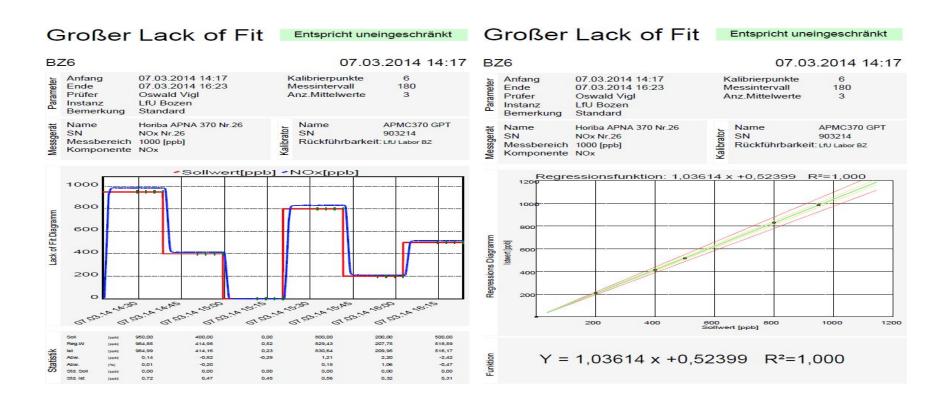
Lack of fit (in laboratorio o in stazione?)

- LoF piccolo (3 punti + zero)
- LoF grande (5 punti + zero) solo durante la prima installazione, ma...!
- in laboratorio (diluitore fisso)
- in stazione (diluitore portatile)
- verifica periodica del diluitore con un flussimetro certificato (per i flussi utilizzati durante il LoF)
- attenzione: spesso i diluitori sono meno lineari degli analizzatori NOx!!

Lack of Fit NO/NOx : concentrazioni consigliate


Concentra- zioni per il lack of fit	Range di certificazione	Zero	20% del range di certificazione	40% del range di certificazione	60% del range di certificazione	80% del range di certificazione	95% del range di certificazione
NO (Norma EN14211)	962	О ррь	192	385	577	770	914 ppb
NOx (Consiglio GK)		O ppb	200 ppb	400 ppb	600 ppb	800 ppb	950 ppb

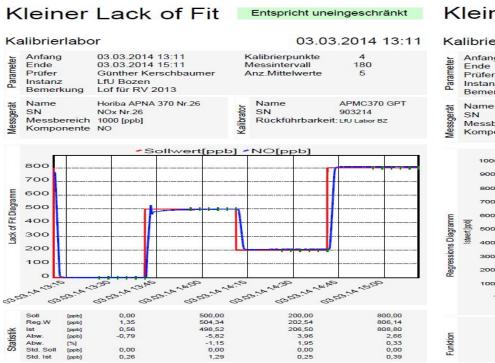
Lack of Fit grande NO/NOx


Concentra- zioni per il lack of fit	Range di certificazione	Zero	20% del range di certificazione	40% del range di certificazione	60% del range di certificazione	80% del range di certificazione	95% del range di certificazione
NO (Norma EN14211)	962 ppb	O ppb	192 ppb	385 ppb	577	770 ppb	914 ppb
NOx (Consiglio GK)		О ррь	200 ppb	400 ppb	600 ppb	800 ppb	950 ppb

È consigliato di variare le concentrazioni tra alte, basse e Zero

Lack of Fit grande (NO)

Lack of Fit grande (NOx)

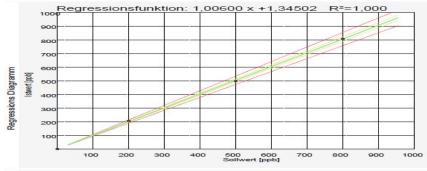


Lack of Fit piccolo NO/NOx

Concentra- zioni per il lack of fit	Range di certificazione	Zero	20% del range di certificazione	60% del range di certificazione	95% del range di certificazione
NO (Norma EN14211)	962 ppb	O ppb	192	577	914 ppb
NOx (Consiglio GK)		О ррь	200 ppb	600 ppb	950 ppb

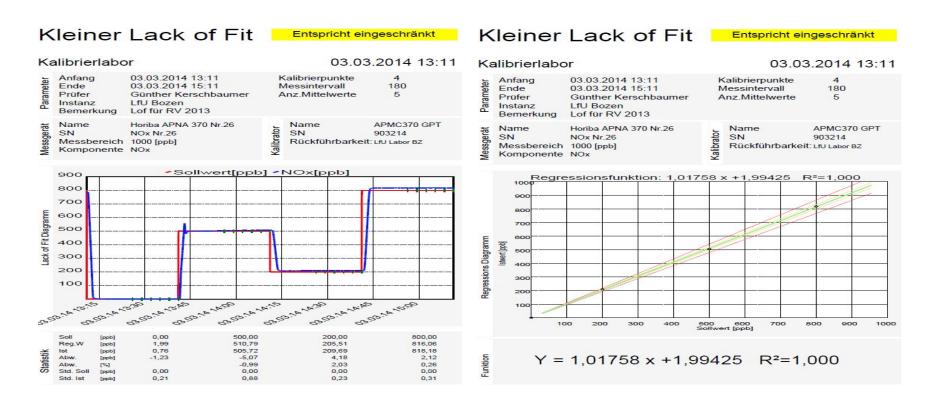
È consigliato di variare le concentrazioni tra alte, basse e Zero

Lack of Fit piccolo (NO)


Kleiner Lack of Fit

Entspricht uneingeschränkt

Kalibrierlabor


03 03 2014 13:11

ere	Anfang Ende	03.03.2014 13:11 03.03.2014 15:11	N	(alibrierpunkte Messintervall	4 180
Parameter	Prüfer Instanz Bemerkung	Günther Kerschbaumer LfU Bozen Lof für RV 2013	Δ	nz.Mittelwerte	5
Messgerat	Name SN Messbereich Komponente		Kalibrator	Name SN Rückführbark	APMC370 GPT 903214 eit: LfU Labor BZ

 $Y = 1.00600 \times +1.34502 R^2 = 1.000$

Lack of Fit piccolo (NOx)

Controlli annuali

3. utilizzo del diluitore e del generatore di ozono

- solo diluitore (1 punto)
- solo GPT (1 punto + GPT1 / GPT2)
- diluitore multipunto
- diluitore multipunto + GPT
- test interferenza umiditá

Controlli annuali

4. stabilità della miscela di gas

- GPT: controllo prima e dopo il test GPT
- LoF: verifica periodica del diluitore con flussimetro certificato sopratutto se viene portato da una stazione all'altra.

Attenzione se cambia la pressione ambientale! (uso in montagna)

- Stabilità della bombola (per NO e per NOx)
 - diminuizione della pressione
 - stabilitá negli anni
 - temperatura
 - contenuto di NO2

materiali da utilizzare per la misura di NO/NOx

- riduttori
- tubi
- raccordi

metodi per montare il riduttore di pressione

- lavaggio a pressione
- lavaggio con pompa a vuoto

vantaggi e svantaggi (discussione!):

- bombola a bassa concentrazione (NO in N2)
- diluitore con bombola alta concentrazione

scelta dei flussi del diluitore

prima dell'acquisto del diluitore

- lavaggio bombola
- consumo annuale
- tipo di gas (PRM, CRM, campione di lavoro)

in fase d'uso

- consumo gas
- tempi di passivazione
- verifica flusso MFC (range del flussimetro?)

Scelta della concentrazione della bombola ad alta concentrazione in base a:

- concentrazione desiderata
- range dei MFC
- tipo di gas (PRM, CRM, campione di lavoro)
- incertezza del gas
- stabilità del gas

verifica della concentrazione d'ozono per le due fasi GPT (analizzatore di ozono) ? (discussione!)

- serve sapere la concentrazione di O3 o no?
- deve essere stabile l'O₃?
- serve sapere la concentrazione di NO2 ?

Consigli utili

Taratura dello ZERO:

usare diversi sistemi e cambiarli di volta in volta

(é quasi impossibile trovare aria di zero certificata che soddisfa le richieste della norma!)

- filtro di aria di zero
- generatore di aria di zero con compressore e sistema di deumidificazione
- bombola di aria di zero

Consigli utili

Taratura dello SPAN (NO/NOx):

bombola a bassa concentrazione NO in N2

- per evitare la saturazione del convertitore NOx si consiglia di limitare il tempo di taratura (es. max =15 minuti)
- ogni taratura dovrà avere la stessa durata per ottenere la ripetibilità (es.7 minuti ma può dipendere dal tempo di risposta del analizzatore)
- prestare la massima attenzione a non inquinare la bombola durante il montaggio del manometro (fare il vuoto dell'interno riduttore prima di aprire la valvola della bombola)
- usare tubazione adeguata (PTFE scuro, acciaio inox, PFA, ...)
- verificare che tutti i raccordi siano a tenuta
- tenere il riduttore sempre in pressione (ovviamente con la valvola della bombola ben chiusa)

Consigli utili

- Taratura dello SPAN (NO/NOx):
 - diluizione dinamica (NO ad alta concentrazione in azoto) diluito con aria:
 - far flussare il calibratore per un tempo adeguato in modo da evitare la formazione di NO2
 - usare riduttori con volumi interni ridotti, tutto in acciaio INOX
 - verificare periodicamente i flussi del calibratore con un flussimetro adeguato (rapporti di diluizione e linaritá:

(attenzione alla temperatura di riferimento 0°C oppure 20°C)

i controlli di verifica sulla strumentazione di rete / laboratorio

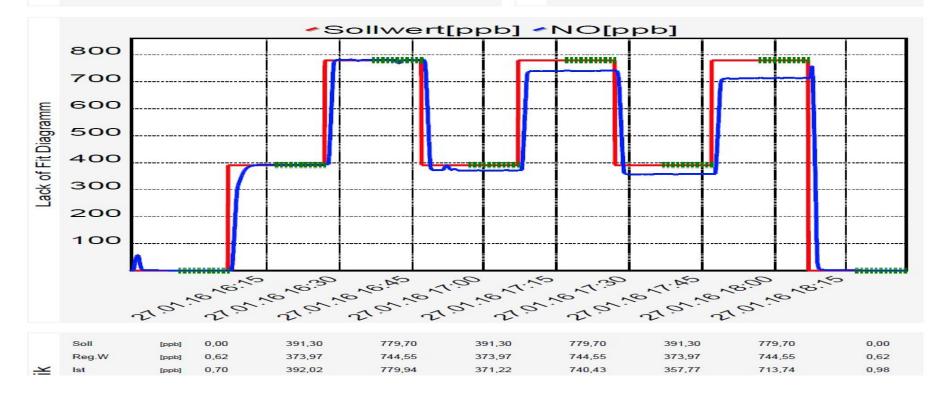
controllo dello strumento secondo una check list:

- test elettrici
- test di tenuta del circuito pneumatico (con e senza portafiltro)
- test dei segnali elettrici
- test sensori di temperatura / pressione
- test del flusso
- test della pompa (depressione)
- plausibilitá dei fattori K
- verifica dei manuali di qualitá dello strumento

i controlli di verifica sulla strumentazione di rete / laboratorio

- taratura dell'analizzatore con campione di lavoro di stazione
- verifica della taratura con sistema di stazione
- taratura dell'analizzatore con campione di riferimento
- calcolo dei diversi fattori per Zero/Span, LoF, GPT ecc.
- confronto con i risultati ricavati durate l'ultima verifica
- statistiche per tutti gli analizzatori di rete
- Verifica degli campioni di riferimento quando si torna in laboratorio (gas Span, lampada O3 della GPT, linearità MFC)

interferenza umiditá

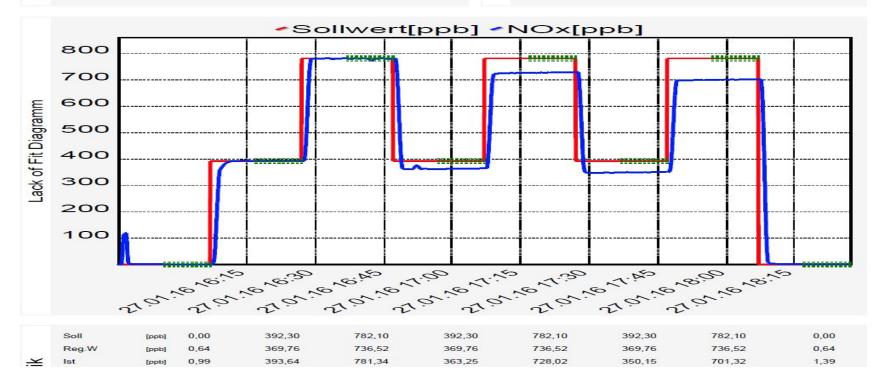

 a cosa servono i sistemi di eliminazione dell'umidità del campione di misura?

Interferenze con umiditá canale NO

Name
SN
TEI42i_Nr.19 Ref BZ
No

Kalibrator

Name CMK GPT Labor BZ SN CMK GPT Labor BZ Rückführbarkeit:



Interferenze con umiditá canale NOx

Name
SN
TEI42i_Nr.19 Ref BZ
TEI42i_Nr.19 Ref BZ
Messbereich
Messbereich
Nox

Kalibrator

Name CMK GPT Labor BZ SN CMK GPT Labor BZ Rückführbarkeit:

Campione di lavoro senza umidità (~4%)

		concentrazione impostata sul calibratore	NO	NO2	NOx
			800	0	800
			NO	NO2	NOx
		misurato con TEI42i			
		senza permadry	783	3	786
		concentrazioni effettivi	concentrazi	oni misurati dal	l'analizzatore
NO	NO2	concentrazioni effettivi NOx	concentrazi NO	oni misurati dal NO2	l'analizzatore NOx
NO 700	NO2 100				
		NOx	NO	NO2	NOx
700	100	NOx 800	NO 700	NO2 100	NOx 800
700 400	100 100	NOx 800 500	NO 700 400	NO2 100 100	NOx 800 500

Campione di lavoro con umidità del ~78%

		-			
			NO		NOx
		concentrazioni calibratore effettivi	783	3	786
			NO	NO2	NOx
		misurato con TEI42i			
		senza permadry	712	-8	704
		Fattore K di taratura dell'analizzatore	1,100		1,116
		concentrazioni effettivi	concentrazio	ni misurati da	ıll'analizzatore
NO	NO2	NOx	NO	NO2	NOx
700	100	000			
	100	800	636,5	80,0	716,5
400	100	500	636,5 363,7	80,0 84,1	716,5 447,8
			•	,	,
400	100	500	363,7	84,1	447,8
400 200	100 100	500 300	363,7 181,9	84,1 86,8	447,8 268,7

influenza dell'umidità nella misura:

(risultati delle) prove pratiche in laboratorio

Grazie per la vostra attenzione!

<u>guenther.kerschbaumer@provinz.bz.it</u> <u>c.tarricone@arpa.vda.it</u>