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Abstract The increasingly important effect of climate
change and extremes on alpine phenology highlights the
need to establish accurate monitoring methods to track inter-
annual variation (IAV) and long-term trends in plant phe-
nology. We evaluated four different indices of phenological
development (two for plant productivity, i.e., green biomass
and leaf area index; two for plant greenness, i.e., greenness
from visual inspection and from digital images) from a 5-
year monitoring of ecosystem phenology, here defined as
the seasonal development of the grassland canopy, in a sub-
alpine grassland site (NW Alps). Our aim was to establish an
effective observation strategy that enables the detection of
shifts in grassland phenology in response to climate trends
and meteorological extremes. The seasonal development of
the vegetation at this site appears strongly controlled by
snowmelt mostly in its first stages and to a lesser extent
in the overall development trajectory. All indices were able
to detect an anomalous beginning of the growing season
in 2011 due to an exceptionally early snowmelt, whereas
only some of them revealed a later beginning of the growing
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season in 2013 due to a late snowmelt. A method is devel-
oped to derive the number of samples that maximise the
trade-off between sampling effort and accuracy in IAV
detection in the context of long-term phenology monitoring
programmes. Results show that spring phenology requires a
smaller number of samples than autumn phenology to track
a given target of IAV. Additionally, productivity indices
(leaf area index and green biomass) have a higher sampling
requirement than greenness derived from visual estimation
and from the analysis of digital images. Of the latter two,
the analysis of digital images stands out as the more effec-
tive, rapid and objective method to detect IAV in vegetation
development.

Keywords Ecosystem phenology · Subalpine belt ·
Greenness · Leaf area index · Biomass · Digital camera ·
Grassland

Introduction

Global change is altering plant phenology in the north-
ern hemisphere (Menzel et al. 2006; Linderholm 2006;
Parmesan 2007) and also in the alpine and subalpine belt
in temperate ecosystems (Inouye 2008; Inouye and Wiel-
golaski 2013). In particular, in mountain areas, the sug-
gested increase in frequency of climate anomalies, such as
early snowmelts, summer droughts or warm winter spells
(Gobiet et al. 2014; Beniston 2005), highlights the need to
establish accurate monitoring methods to detect inter-annual
variation (IAV) in plant phenology (Rutishauser et al. 2008;
Orsenigo et al. 2014). In turn, a better knowledge of fac-
tors regulating the timing and dynamics of phenological
responses would provide reliable information that can be
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incorporated into existing land surface models. According-
ly, Richardson et al. (2013) highlighted the need for an
accurate representation of phenological processes in models
that couple the land surface to the climate system. Among
alpine and subalpine ecosystems, grasslands are regarded as
hotspots where the impact of climate change will be very
likely stronger than on other mountain vegetation because
of their high diversity (Körner 2005) and due to pasture
abandonment and the wide range of micro-climatic condi-
tions occurring over short distances (Zeeman MJ et al. 2010;
Wohlfahrt et al. 2003).

The sensitivity of alpine ecosystems to the IAV in meteo-
rological drivers has been well acknowledged for a long
time (Walker et al. 1995). Recent studies not only indi-
cate a strong climatic control on carbon dioxide (CO2)
exchange of alpine meadows but also reveal a strong
acclimation capacity due to ecosystem response to IAV
(Marcolla et al. 2011; Chen et al. 2014). An estimate of
future trends in alpine plants growth suggests that shifts in
timing of snowmelt will affect the onset of plant growth and
biomass production in the Swiss Alps (Rammig et al. 2010).
Additionally, experimental studies indicate that subalpine
meadows are sensitive to climate change manipulations,
reporting either community or species-specific responses
(Cornelius et al. 2013; Dunne et al. 2003).

Concerning phenology, much work has been conducted
in temperate forest ecosystems (Richardson et al. 2010),
while fewer studies have been devoted to grasslands and
shrublands, particularly in the alpine and subalpine belt
(Richardson et al. 2013; Inouye and Wielgolaski 2013).
Field measurements of grassland phenology are tradition-
ally based on the observation of individual plants or plots to
detect vegetative and reproductive phases of single species
(Wipf et al. 2009; Inouye 2008; Cleland et al. 2006). Addi-
tionally, observations are usually conducted focusing on the
first part of the growing season, with much less attention
devoted to the senescence (Richardson et al. 2013), although
there is increasing evidence that green-up phenology may
show different signals compared to senescence phenology
(CaraDonna et al. 2014).

Recently, methods have been developed to investigate
larger portions of the vegetation community (Aldridge et al.
2011; Diez et al. 2012; CaraDonna et al. 2014), there-
fore shifting from species phenology to the community
or ecosystem phenology and from single-point analysis
of a given phenological event to the description of sea-
sonal trajectories (Eklundh et al. 2011; Gu 2009; Richard-
son et al. 2006). The objective of this upscaling from
individuals to ecosystem is to obtain information on pro-
cesses that affect and are affected by phenology at the
ecosystem level, such as carbon and water fluxes, albedo,
etc. Accordingly, remote sensing has been widely used
to explore land surface phenology at the landscape level

(Jones et al. 2013; Ma and Zhou 2012; Studer et al. 2007;
De Beurs and Henebry 2010; Henebry and De Beurs 2013).
Field measurements that attempt to track spatially integrated
phenological signals include the estimation of greenness of
a given vegetation type. Greenness has been traditionally
estimated by an observer in the field, but recently digital
image analysis has been proven to be a valuable tool for
the computation of greenness index (e.g. Richardson et al.
(2009)). Furthermore, productivity of the canopy can be
measured by sampling the plant biomass that could be sub-
sequently weighted (biomass estimation) or analysed for the
determination of leaf area index (LAI). The spatial scale
of these methods can be viewed as in between the obser-
vation of single-species phenology and remotely sensed
land surface phenology (Studer et al. 2007). Compared to
the first, these methods have the advantage of integrating
the response of multiple species in a single index, whereas
with respect to the latter, they have a much higher spatial
resolution. Field work for data collection and/or analysis
usually represents a big effort for researchers, so a key ques-
tion would be which experimental protocol (number and
distribution of observation units) is required to track IAV of
a given phenological variable and, among different obser-
vational approaches, which are more suitable to investigate
IAV in the context of a long-term monitoring programme.
Reducing sampling effort is laudable especially in the moni-
toring of remote areas (Cornelius et al. 2011). Previous
sample size analyses suggest that a sample size of 15
sampling units and a fortnightly frequency is the min-
imum requirement for tracking a seasonal phenological
trajectory in deciduous forest ecosystems (Morellato et al.
2010). Liang and Schwartz (2009) report that a sample size
of 20 plants accurately described the population pheno-
logy of a single tree species, Populus tremuloides. More
recently, Liang et al. (2011) used a minimum num-
ber of 20 observations per species to describe popula-
tion phenology of a mixed deciduous forest. Schwartz
et al. (2013) reported that 30 individuals and a 4-day
sampling frequency minimises data uncertainty and field
work expenses in a mixed deciduous/evergreen forest. Yet,
whether the suggested number of observations is sufficient
to describe population phenology in a subalpine grassland
is an unanswered question. Additionally, a coherent set
of sampling rules and methods for phenology is strongly
requested (Hudson 2010) and under recent development
(Denny et al. 2014).

In this work, we used 5 years of phenological data
obtained from weekly to biweekly sampling in a subalpine
grassland in the northwestern Italian Alps to

(1) illustrate the seasonal trajectories of phenologi-
cal indices and their IAV at the community level, and
the relationship between indices and the meteorological
conditions;
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(2) evaluate which indices are more suitable to determine
IAV in the seasonal trajectories of phenology;

(3) assess if and how the experimental design could be
optimised by reducing sampling effort without losing statis-
tical power when evaluating IAV in seasonal trajectories of
phenological indices.

Materials and methods

Study site

The study was carried out in a subalpine grassland, in the
northwestern Italian Alps. The site is an unmanaged grass-
land located in the Aosta Valley region at an elevation of
2160 m asl (45◦ 50′ 40′′ n, 7◦ 34′ 41′′ e). Vegetation con-
sists of the dominant Nardus stricta L., Festuca nigrescens
all., Arnica montana L., Carex sempervirens vill., Geum
montanum L., Anthoxanthum alpinum L., Potentilla aurea
L. and Trifolium alpinum L. The terrain slopes gently (4◦),
and in areas with a relatively steeper slope, where the soil is
shallower, Arnica montana, Carex sempervirens and Geum
montanum are dominant and a lower Nardus stricta cover
occurs. The soil is classified as Cambisol (FAO/ISRIC/ISS).
The site is characterised by an intra-alpine semi-continental
climate, with mean annual temperature of 3.1 ◦C and mean
annual precipitation of about 880 mm. On average, from the
end of October to late May, the site is covered by a thick
snow cover (90–120 cm) that limits the growing period to
an average of 5 months. Long-term snow depth and air tem-
perature averages were computed on the basis of a 30-year
record (1978–2008) from the weather station of Cignana
(45◦ 52′ 31′′ n, 7◦ 35′ 19′′ e), located nearby the Torgnon
site, and at the same altitude.

Experimental design

Four phenological indices were evaluated in this study, two
related to plant productivity and two to greenness: the first
two are green biomass (GB) and LAI. GB was determined
after sampling a 30 × 30 cm quadrat by clipping vege-
tation to 2 mm above the ground. The material was then
separated to green and dry mass, dried to constant weight
at 60 ◦C for 48 h and weighed. LAI was determined on
the same material: sample leaves were run through an area
meter (model LI-3100, LI-COR, Inc., Lincoln NE) and the
hemi-surface area of the green material was determined.
LAI was obtained by dividing the total hemi-surface area
of the harvested material with the cut ground surface area
(Bréda 2003).
Greenness indices consist of the following:

(i) visual estimation of vegetation greenness (VG)
obtained by assigning a percentage of green cover by visual

observation; visual observation of greenness was performed
by different observers over years, trained by one main
responsible for this task; additionally, the main responsible
supervised the sampling during about 80 % of the sampling
dates over the 5-year study;

(ii) the greenness index (Gillespie et al. 1987; Richardson
et al. 2009) was obtained from the analysis of nadiral digital
images (NG). Nadiral images were acquired with a reflex
camera CANON EOS 50D from an height of about 1.5 m.
The collected images were then analysed in the R environ-
ment (R Core Team 2014) to compute the green chromatic
coordinate that represents the proportion of green of each
image (Klosterman et al. 2014).

For each index, observations were conducted on four ver-
texes of three rectangular plots, approximately 200 m apart
from each other. Each plot was 40 × 15 m, and the mini-
mum distance between vertexes was therefore about 15 m.
Because of the destructive sampling procedure, GB and LAI
were sampled in the surroundings of the identified vertexes,
whereas VG and NG were always evaluated in the same
30 × 30 cm sampling square.

Samples were collected every 1–2 weeks from the
snowmelt (May–Jun) to the end of the growing season (Oct–
Nov) for 5 years (2009–2013). Each year sampling began
no later than 10 days after snowmelt, except in 2012, when
the first sample was collected 1 month after snowmelt.

Data analysis

Seasonal trajectories Data from each vertex were used
to depict seasonal trajectories of a given index. A cubic
spline was then fitted to the normalised seasonal trajecto-
ries of each index and phenological phases were computed
as quantiles on the curve. Accordingly, from the seasonal
course of each index, 10 phases were extracted, 5 of them
corresponding to the day of the year (doy) when 10th, 25th,
50th, 75th and 90th percentile of the maximum seasonal
value was reached (greening phases, G10–G90) and 5 of
them corresponding to the decreasing phases (yellowing
phases, Y10–Y90).

Inter-annual variation Linear mixed models (MM) were
used to test for significant differences among years for a
given phase and index. Year was set as fixed effect and plots
and vertices as random effects. Tukey HSD was used to
test for differences among years, at a significance level of
p < 0.05.

Comparison with gross primary production At the study
site, continuous eddy covariance measurements of CO2

exchange between the ecosystem and the atmosphere are
available. Details on instrumental setup, measurements and
data processing are provided in Galvagno et al. (2013). In
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Table 1 Number of possible combinations for each reduced sampling
size

N of vertices 3 plots 2 plots 1 plot

4 1 3 3

3 64 48 12

2 216 108 18

1 64 48 /

detail, the gap-filling and partitioning methods described
in Reichstein et al. (2005) and Lasslop et al. (2010) were
applied separately and then averaged to obtain gross pri-
mary production (GPP) data. Seasonal trajectories of the
investigated indices were compared to seasonal trajectories
of GPP.

Evaluation of experimental design We tested two meth-
ods to determine the ability of our indices in detecting IAV:
(1) a traditional power analysis and (2) an analysis based on
a combination of sample removal and MM.

(1) The power analysis allows the extraction of a sam-
ple size (n) required to detect a given effect size (d) at
a fixed power (1−β). The effect size was obtained from
the variance components (i.e. between and within variance),
estimated by the MM. The sample size was calculated with
a fixed β at 0.20, as suggested by Cohen (1988).

(2) For each index and each phase, we tested whether
there were significant differences between paired years by
means of MM. We then sequentially reduced the number of

vertices and plots in all possible combinations. This resulted
in one complete model (three plots and four vertices) and 10
reduced models, each with a different number of possible
combinations of vertices and plots (Table 1). For each com-
bination, we fitted a MM, extracted the model p value and
computed the mean difference (dmean, expressed in days)
in the doy of occurrence of a given phase between the two
years in comparison. We then investigated the relationship
between dmeans and p values. Obviously, a higher dmean (i.e.
a larger difference in days of occurrence of a given threshold
between 2 years) results in lower p values. The inverse rela-
tionship between dmean and p values was parametrised using
a cubic spline and the dmean corresponding to a confidence
level of p = 0.05 (dp = 0.05) was predicted from the fitting.
Hence, a predicted dp = 0.05 was extracted for each index,
phase and sample size. dp=0.05 was used as an estimate of
the minimum detectable difference at a confidence level of
p = 0.05 for a given index, phase and sample size. Uncer-
tainty on dp=0.05 was estimated by a bootstrap method with
500 replications.

Results and discussion

Snowfall and air temperature

The 5 years of study showed quite distinct meteorologi-
cal conditions (Fig. 1). Winter 2009 was the most snowy,
whereas winter 2012 showed the lowest cumulative snow
amount. However, in 2012, a late spring snowfall prevented
the complete snowmelt from occurring in April. The earliest
snowmelt occurred in 2011 and the latest was in 2013.

Fig. 1 Seasonal course of air
temperature and snow depth for
the 5-year study period (21-day
window moving average). The
grey polygon denotes the
long-term (1978–2008) average
(±the interquartile distance)
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Air temperature across years was slightly less variable
than snow amount, with some exceptions. For example,
a departure from the 30-year variability envelope was
recorded in 2012 before the snow melt, with air tempera-
tures higher than the average in March. In 2013, late May
was colder than the 30-year average. Summer temperatures
were within the 30-year envelope for all investigated years.

Inter-annual variability of indices and extracted
thresholds

The seasonal trajectories of all indices are reported in Fig.
2. All indices showed an earlier beginning of the growing

Fig. 2 Seasonal trajectories of all investigated indices in 3 years.
Indices are averaged over all plots and vertexes for each sampling date.
The grey area denotes the 5-year mean ± 2se. GB green biomass, LAI
leaf area index, NG nadiral greening, VG visual greening

season 2011 compared to other years, as a result of the ear-
lier snowmelt in 2011 (Galvagno et al. 2013). All indices
also showed a later beginning of the growing season in 2013
as a result of the later snowmelt, even if in terms of extracted
thresholds the anomaly in 2013 is much less clear than in
2011 (see below). VG is the index with lower inter-annual
variation, with the only significant departure from the 5-year
average trajectory being represented by the earlier onset in
2011 and the later onset in 2013. The same is true for NG,
except that in 2013, also the seasonal maximum occurred
later than the 5-year average. GB is the index with highest
inter-annual variation. Its seasonal courses suggest that the
highest biomass production occurred in 2009 and the low-
est in 2013. LAI is in agreement with GB with respect to
the lowest plant production in 2013. The shifted trajectory
in all indices for 2013 may be explained by the combi-
nation of later snowmelt and colder temperatures in May,
which may have delayed plant development. The earlier
onset of the growing season in 2011 did not result in higher
plant production nor greenness. A previous study (Galvagno
et al. 2013) clarified that the earlier onset of 2011 growing
season resulted in reduced photosynthetic activity com-
pared to average years 2009 and 2010. It also demonstrated
that this feature could be attributed to the biotic response
of the ecosystem to an exceptional climate event (i.e. the
early snowmelt) rather than to direct limiting weather con-
ditions of the summer period. The seasonal development
of the vegetation at this site appears therefore strongly
controlled by snowmelt in its first stages and to a lesser
extent in the overall development trajectory, whereas other
factors (namely temperature and precipitation) concomi-
tantly modulate the short-term changes during the growing
season.

From the seasonal course of all indices, the cubic spline
fitting and thresholding allowed us to extract greening and
yellowing phases. Because the main objective of the thres-
hold extraction is to establish whether there are changes
from year to year in the beginning and end of the gro-
wing season, we will mainly refer to only one early and
one late phase (G25 and Y75, respectively). These two were
chosen instead of first (G10) and last (Y90) phase because
the latter may be more sensitive to outliers and more influ-
enced by the sampling schedule (Fig. 2). For example, for
VG, the first spring sampling in years 2010–2012 occurred
probably too late and failed to catch the baseline of the
increasing trajectory. The G25 phase appears therefore more
suitable in this case and, in general, in remote alpine grass-
lands that can be reached only after the complete snow melt,
when the beginning of the growing season may already have
occurred.

Patterns discussed for the seasonal trajectories are appa-
rent also for the extracted phases (Fig. 3). In addition, the
phase extraction allows to show the inter-annual differences
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Fig. 3 Mean date of occurrence of phases G25 and Y75 extracted
from percentiles on the spline fitting for all indices in 5 years. Error
bars represent ±2se of the mean. Different letters indicate significant
difference (p < 0.05) between the means (Tukey HSD). VG visual
greening, NG nadiral greening, GB green biomass, LAI leaf area index

illustrated for the seasonal trajectories in a quantitative way
(Fig. 2) by means of MM and the post hoc tests. For all
indices, phase G25 in 2011 occurred significantly earlier
than all other years, but only G25 extracted for NG occurred
significantly later in 2013 compared to other years. For the
yellowing phases (Y75), it is difficult to find a pattern of
inter-annual variation consistent across indices. However,
productivity indices generally show higher IAV compared
to greenness indices.

Inter-annual patterns apparent for the spring phases (e.g.
the anticipated green-up in 2011) do not necessarily result
in corresponding patterns in the yellowing phases (absence
of a lag effect).

Relationship between indices and gross primary
production

Field measurements are often associated to/substituted by
automated systems to track phenology at the ecosystem
level (Gonsamo et al. 2013; Noormets et al. 2009). More-
over, increasing attention is devoted to understanding the
impact that phenological shifts or inter-annual variability
can have on photosynthesis and carbon sequestration, i.e.
the phenology of CO2 ecosystem exchange (Richardson
et al. 2010; Dragoni et al. 2011). Figure 4 reports a scat-
ter plot between our indices and daily average GPP derived
from eddy covariance measurements. All indices show some

Fig. 4 Scatterplot between seasonal trajectories of the investigated
indices and gross primary production (GPP). GPP data represent the
mean values for 7-day windows including only fluxes measured dur-
ing periods with incident photosynthetic photon flux density (PPFD)
> 1400 μmol m−2 s−1. Weekly time windows are centred on the day
samples for indices were collected (Flanagan et al. 2002). The coef-
ficient of determination (r2) of a quadratic fit and its standard error
envelope are shown. VG visual greening, NG nadiral greening, GB
green biomass, LAI leaf area index

degree of correlation with GPP; however, greenness indices
(VG and NG) show a stronger relationship compared to pro-
ductivity indices (GB and LAI). In particular, NG appears to
be the index that better correlates with GPP because it shows
a slightly higher coefficient of determination and a higher
inter-annual consistency compared to VG. The few pre-
vious comparisons between plant greenness and GPP report
regression coefficients similar to those found in this study
(e.g. Peichl et al. (2014)). As regards productivity indices,
a number of studies compare GPP and biomass or LAI,
some of them reporting correlations similar to ours (Hirota
et al. 2010) and some reporting a stronger relationship (e.g.
Flanagan et al. (2002) and Xu and Baldocchi (2004)). The
relatively lower relationship between GPP and GB may
reflect the higher spatial and temporal variability of the lat-
ter compared to greenness indices. In fact, GB is the index
showing the highest IAV (Fig. 2).

Relationship between sample size and ability to detect
inter-annual variation

Table 2 reports the number of sampling units required to
obtain a significant inter-annual difference (p < 0.05) based
on a power analysis. This analysis can be interpreted as the
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Table 2 Number of sampling points at β = 0.20 (Cohen 1988) required to obtain significant inter-year differences (p < 0.05), based on a power
analysis

G10 G25 G50 G75 G90 Y10 Y25 Y50 Y75 Y90

VG 4 11 27 60 91 125 34 18 12 23

NG 4 8 12 15 16 18 32 51 17 37

GB 3 9 19 25 34 33 18 21 17 28

LAI 4 7 34 40 20 26 33 23 7 8

ability of the four investigated indices to track inter-annual
variations in the phenology of this grassland.

The analysis shows that early greening phases have a
very low sampling requirement compared to central and yel-
lowing phases. It shows furthermore that all indices except
LAI have a high sampling requirement for the late yellowing
phases. Greenness indices (VG and NG) perform slightly
worse than productivity indices (GB and LAI) in the late
yellowing phases. Additionally, NG shows a relatively low
sampling requirement also in the intermediate phases near
the maximum seasonal development.

Although the number of sampling points obtained by
the power analysis already provides an indication of sam-
pling design in this subalpine grassland, a question still
remains on whether it is preferable to arrange the sampling
points into different plots and how many points per plot
are required. We therefore performed an additional analysis
based on resampling technique. We reduced the sample size
by sequentially removing vertices and plots and fitted a MM
for each possible combination of reduced dataset (Table
1). We then parametrised the inverse relationship between
inter-annual differences and correspondent p values from
the MM, to predict the minimum detectable difference at
p = 0.05 (dp = 0.05). The dp = 0.05 was extracted for each
index, phase and sample size.

Figure 5 illustrates the relationship between the num-
ber of plots and vertices and the minimum detectable
difference at p = 0.05 for two selected phases (G25 and
Y75) representative of the early and late growing sea-
son. As expected, increasing the number of vertices allows
a reduction of the minimum detectable difference. How-
ever, also increasing the number of plots always leads to
a reduction of the minimum detectable difference. This
is noteworthy because one could expect that increasing
the number of plots would capture more spatial variability
and eventually result in higher representativeness but lower
replicability. This occurrence will be further discussed
later.

When comparing greening and yellowing phases, the
minimum detectable difference is consistently lower in G25
compared to Y75, suggesting that not only the selected
indices are more suitable to track greening than yello-
wing dynamics but also that yellowing dynamics are more

noisy due to, e.g. a higher spatial variability. Across indices,
the ones related to greenness (NG and VG) always lead to
a lower minimum detectable difference. In particular, NG
performs slightly better than VG in the greening phases,
whereas the opposite is true for the yellowing phases. The
two productivity indices, i.e. GB and LAI always perform
worse than the greenness indices because these indices are
more sensitive to the spatial variability in plant species com-
position and the consequent differences in plant biomass
production and LAI.

Figure 5 allows us to speculate on which would be
the best trade-off between sampling effort and power in
detecting inter-year differences in order to design future
sampling strategies. To illustrate it, we have chosen a

Fig. 5 Minimum detectable difference (dp=0.05, expressed in days)
as a function of number of plots and vertices for phase G25 (left
column) and Y75 (right column) of all investigated indices from the
sample removal analysis. For reference, a horizontal grey line at 7 days
(1 week) is shown. VG visual greening, NG nadiral greening, GB green
biomass, LAI leaf area index
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threshold of 7 days of inter-annual difference (the hori-
zontal grey line in Fig. 5). This threshold was chosen
because weekly sampling frequency is common in phe-
nology sampling protocols (Richardson et al. 2006; Norby
et al. 2003). Schwartz et al. (2013) report a 4-day sam-
pling frequency as the best effort to minimise data uncer-
tainty in field phenology of a mixed deciduous/evergreen
forest. On the other hand, the temporal resolution of
satellite-derived phenology at sufficient spatial resolution
is likely higher than 7 days. Hence, our 7-day threshold
can be considered conservative compared to satellite pro-
ducts’ temporal resolution and is likely the maximum affor-
dable frequency for a manual sampling in remote mountain
areas.

According to our analysis, the target of 7 days of inter-
annual difference in phase G25 can be achieved by sampling
at least three plots and three vertices per plot (nine samples
in total) for GB and LAI. NG and VG show lower sampling
requirement because for both indices, we would be able to
track an inter-annual difference lower than 7 days by sam-
pling three plots and two vertices (six samples) or two plots
and three vertices (again six samples). For none of the inves-
tigated indices is one plot sufficient to track an inter-annual
difference lower than 7 days. For the yellowing phases, the
target of 7 days of inter-annual difference is hardly achieved
with any index except for visual greening, for which either
eight or nine samples arranged in two or three plots allow
detecting a 7-day difference.

Consistent with the power analysis, sample removal also
indicates a worse performance of the productivity indices
compared to greenness indices. These appear therefore to

be more robust against sample removal than productivity
indices, and this may be due to the higher inter-plot and
intra-plot variability of the latter.

The influence of sample size has been rarely eval-
uated in the past (Hudson 2010; Hemingway and Over-
dorff 1999), especially in mountain grasslands. Morellato
et al. (2010) reported that 15 to 25 observations for a single
species per sampling date are optimal to reduce uncer-
tainty on phenological phases in a very diverse ecosystem
such as tropical forest. We showed that in a rather homo-
geneous subalpine grassland such as in our study site, a
smaller number of samples is needed to detect a 1-week
IAV.

Figure 5 suggests that the total number of samples rather
than their distribution in different plots is more influential
in reducing the minimum detectable difference, especially
for greenness indices. To clarify this concept further, we
present in Fig. 6 a conceptual model drawn from our data,
illustrating the relationship between minimum detectable
difference, mean data variability and sample size. The mean
spatial variability is expressed here as the average stan-
dard deviation of phases G25 and Y75 across all years, but
standard deviations are computed for each year separately
and then averaged, so to exclude the effect of inter-annual
differences. Spatial variability clearly increases with sam-
ple size, whereas the opposite is true for the minimum
detectable difference. Ranges of spatial variability are lower
for greening than for yellowing phases and this is especially
true for productivity indices. This supports the idea that
spring phenology has a lower sampling requirement than
autumn phenology in mountain grasslands because either

Fig. 6 Conceptual model of the
relationship between sample
size, spatial variability and
minimum detectable difference.
Model is drawn based on data of
all years together. Indices are
grouped in greenness indices,
including NG and VG (upper
panels) and productivity indices,
including GB and LAI (lower
panels). Left panels represent
greening phases (G25) and right
panels yellowing phases (Y25)
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autumn phenology is more variable in space or more diffi-
cult to sample with our methods.

Additionally, mean variability is higher for productiv-
ity indices (GB and LAI) than for greenness indices (VG
and NG). This can again indicate a higher spatial variabi-
lity in GB and LAI or that these two methods are more
prone to sampling error and most likely a combination
of both.

Summary and recommendation for ecosystem
phenology sampling protocols

At the subalpine grassland investigated in this study, an
earlier snowmelt in 2011 led to an earlier but slower
development of plants, whereas a later snowmelt in 2013
led to a later occurrence of early greening phases. The
snowmelt appears therefore to control the beginning of
the growing season. All indices were able to show
these features and also agreed in showing that yellow-
ing phases are generally more variable than greening
phases.

Two of the evaluated indices (GB and LAI) require
manual sampling of vegetation and subsequent analy-
sis. One method requires visual observation of green-
ness (VG) and one method (NG) is based on image
analysis.

GB and LAI sampling are the most time-consuming
methods and show a high variability related to the species
composition of the samples. As a consequence, more
samples are needed to achieve a given target of accu-
racy in detecting IAV. The high variability in produc-
tivity indices may result from the combination of spa-
tial variability and measurement error associated with the
complexity of the method. However, it has to be noted
that GB and LAI remain important indices because they
provide detailed quantitative information on the seasonal
development of the structural and biophysical vegetation
properties.

NG and VG perform much better than GB and LAI
in detecting IAV in the phenological trajectories. Also,
VG has an intrinsic deficiency, the subjectivity of the
measurement, which would require that always the same
observer conduct the observations. In contrast to VG, NG
does not lack in objectivity and therefore probably rep-
resents the most accurate tool for monitoring grassland
vegetative phenology in climate change studies (Ahrends
et al. 2008; Crimmins and Crimmins 2008; Richardson
et al. 2009; Migliavacca et al. 2011). Moreover, NG is
the index that better correlates with gross primary produc-
tion. We therefore suggest the use of nadiral pictures to
depict seasonal trajectories of grassland vegetative pheno-
logy as the best trade-off between accuracy and sampling

effort for long-term monitoring programmes of ecosystem
productivity.

The sampling strategy discussed in this study may be
used as an indication to optimise sampling protocols for
grassland community phenology in the context of climate
change studies.
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nen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet
AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenologi-
cal response to climate change matches the warming pattern. Glob
Chang Biol 12(10):1969–1976

Migliavacca M, Galvagno M, Cremonese E, Rossini M, Meroni M,
Sonnentag O, Cogliati S, Manca G, Diotri F, Busetto L, Cescatti
A, Colombo R, Fava F, Morra di Cella U, Pari E, Siniscalco C,
Richardson AD (2011) Using digital repeat photography and eddy
covariance data to model grassland phenology and photosynthetic
CO2 uptake. Agric For Meteorol 151(10):1325–1337

Morellato L, Camargo M, DEca Neves F, Luize B, Mantovani A,
IL H (2010) The influence of sampling method, sample size,
and frequency of observations on plant phenological patterns and
interpretation in tropical forest trees. In: Hudson I, MR K (eds)
Phenological research: methods for environmental and climate
change analysis. NE, Dordrecht

Noormets A, Chen J, Gu L, Desai A (2009) The phenology of gross
ecosystem productivity and ecosystem respiration in temperate
hardwood and conifer chronosequences. In: Noormets A (ed)
Phenology of ecosystem processes. Springer, New York, pp 59–85

Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological
responses in maple to experimental atmospheric warming and CO2
enrichment. Global Change Biology 9(12):1792–1801

Orsenigo S, Mondoni A, Rossi G, Abeli T (2014) Some like it hot
and some like it cold, but not too much: plant responses to climate
extremes. Plant Ecol 215(7):677–688

Parmesan (2007) Influences of species, latitudes and methodologies
on estimates of phenological response to global warming. Glob
Chang Biol 13(9):1860–1872

Peichl M, Sonnentag O, Nilsson M (2014) Bringing color into the
picture: using digital repeat photography to investigate phenol-
ogy controls of the carbon dioxide exchange in a boreal mire.
Ecosystems pp 1–17

R Core Team (2014) R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna,
Austria, URL http://www.R-project.org/

Rammig A, Jonas T, Zimmermann NE, Rixen C (2010) Changes
in alpine plant growth under future climate conditions. Biogeo-
sciences 7(6):2013–2024

Author's personal copy

http://www.R-project.org/


Int J Biometeorol

Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier
P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grn-
wald T, Havrnkov K, Ilvesniemi H, Janous D, Knohl A, Laurila
T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F,
Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M,
Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valen-
tini R (2005) On the separation of net ecosystem exchange
into assimilation and ecosystem respiration: review and improved
algorithm. Glob Chang Biol 11(9):1424–1439

Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006)
Phenology of a northern hardwood forest canopy. Glob Chang
Biol 12(7):1174–1188

Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger
SV (2009) Near-surface remote sensing of spatial and temporal
variation in canopy phenology. Ecol Appl 19(6):1417–28

Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA,
Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luys-
saert S, Migliavacca M, Montagnani L, Munger JW, Moors
E, Piao S, Rebmann C, Reichstein M, Saigusa N, Tomel-
leri E, Vargas R, Varlagin A (2010) Influence of spring and
autumn phenological transitions on forest ecosystem productiv-
ity. Philosophical transactions of the Royal Society of London
Series B. Biol Sci 365(1555):3227–46

Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O,
Toomey M (2013) Climate change, phenology, and phenological
control of vegetation feedbacks to the climate system. Agric For
Meteorol 169:156–173

Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008)
Swiss spring plant phenology 2007: extremes, a multi-century per-
spective, and changes in temperature sensitivity. Geophys Res Lett
35(5):L05,703

Schwartz MD, Hanes JM, Liang L (2013) Comparing carbon flux and
high-resolution spring phenological measurements in a northern
mixed forest. Agric For Meteorol 169:136–147
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