Opportunities to assess grassland biodiversity using digital repeat photograpy

G. Filippa ¹ E. Cremonese ¹ M. Migliavacca ² M. Galvagno ¹ F. Diotri ¹ and A.D. Richardson ³

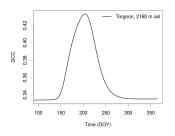
¹Environmental Protection Agency of Aosta Valley - ARPA VdA - Italy ²Max Planck Institute - Biogeochemical Integration (Jena, Germany) ³Department of Organismic and Evolutionary Biology Harvard University (NE- USA)

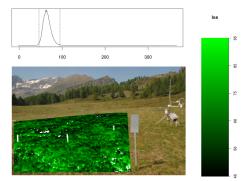
Kusadasi 7 October 2015

Torgnon grassland site, NW Italy, 2160 m asl

Phenocamera networks

- PHENOCAM (200+ sites)
- EUROPHEN (40+ sites)
- ASIA, AUSTRALIA
- \rightarrow Growing scientific interest, growing need for standardized processing tools





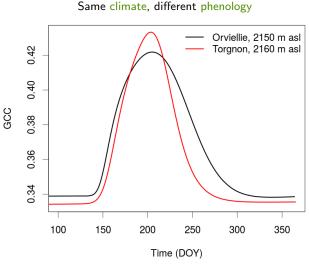
phenopix

Phenopix R package for image processing, fitting and phenophase extraction either with a roi averaged approach or pixel by pixel

available @ https://r-forge.r-project.org/projects/phenopix/

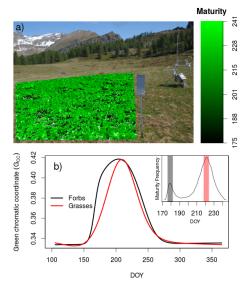
Filippa et al., in prep, AFM

Grassland biodiversity


- Grassland biodiversity is strongly controlled by climate and management practices
- Grassland biodiversity translates into phenodiversity
- Bio/Phenodiversity has implications on ecosystem functioning

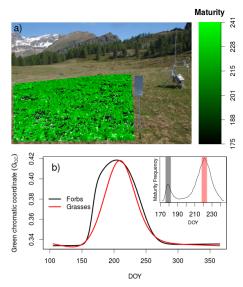
Crouzet (FR), 1900 m asl

Motivation (1)



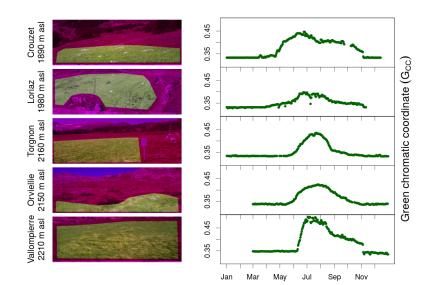
Biodiversity \rightarrow Ecosystem plasticity

Motivation (2)

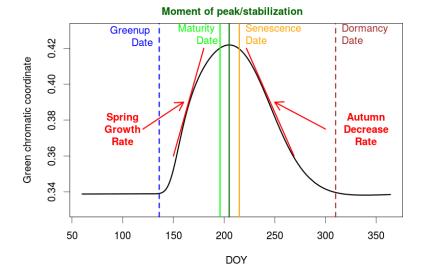

- Phenophase map (20 cm pixel resolution)
- Spatial distribution of phases reflects field observation on vegetation composition, with different seasonal trajectories coherent with the ecology of functional types.

Objective

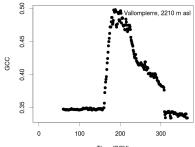
Explore the possibility to investigate biodiversity from phenocameras by means of pixel based analysis and the phenopix R package


The sites - ePHENO network, Western Alps

- 5 grasslands, ranging 1900-2200 m asl
- One year of data (2014)
- Variable degree of biodiversity

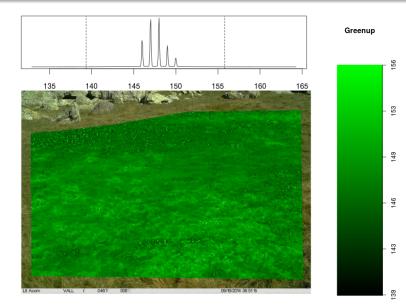


The sites - seasonal trajectories 2014

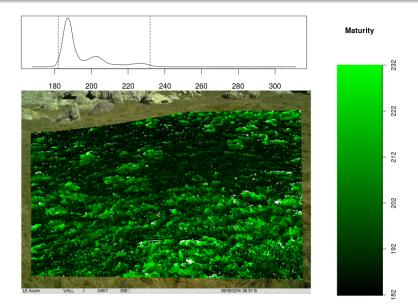


The Approach - Phenophases

Spatial distribution of selected phases - Vallompierre

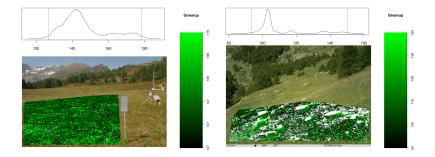


Time (DOY)



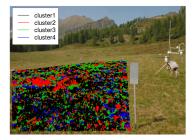
Spatial distribution of selected phases - Vallompierre

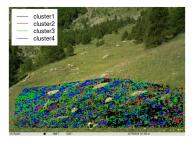
Spatial distribution of selected phases - Vallompierre



Spatial distribution of selected phases - Vallompierre

g.filippa@arpa.vda.it


Spatial distribution of selected phases - Torgnon vs Crouzet



Increasing biodiversity

Cluster Analysis (k-means) - Torgnon vs Crouzet: Maturity phase



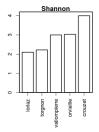
Increasing biodiversity

Hypotheses

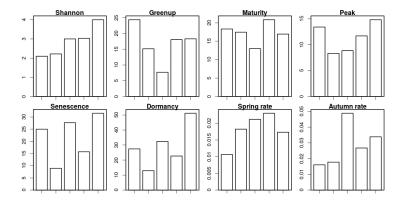
1) Higher biodiversity leads to larger ranges of phenophases in space and lower occurrence of mean values (metrics of the density distribution)

................

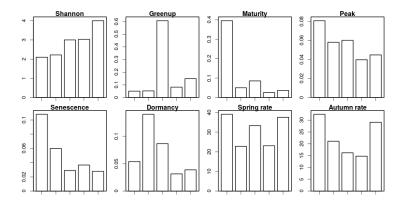
......


2) Higher biodiversity leads to a more scattered species distribution, and lower biodiversity leads to clusters of species (Moran's I of spatial auto-correlation)

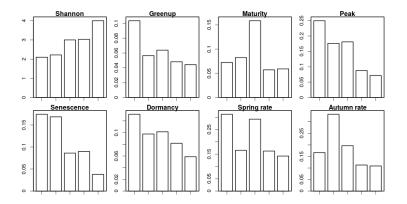
0000000000


00000000000

HP1: standard deviation vs Shannon Index



HP1: standard deviation vs Shannon Index



HP1: density maximum vs Shannon Index

HP2: Moran Index vs Shannon Index

Conclusion and future work

- High (1-2 months) small scale (10-20 cm) spatial variability is well captured by webcam sensors
- Selected metrics of the density functions of spatially explicit phenophases show some degree of correlation with biodiversity indexes such as shannon index
- Moran's I of clusters shows a fairly good correlation with shannon index

Future Work include:

- Validate these results by testing inter-year consistency
- Enlarge the data set to other grasslands (not necessarily alpine..)
- The phenopix R package is freely available and offers completely reproducible code for spatial analysis

