# Analisi comparata di velocità superficiali mediante UAV e GNSS al rock glacier della Gran Sommetta (Valtournenche)

- U. Morra di Cella (1), F. Diotri (1), R. Delaloye (2), P. Pogliotti (1)
- E. Dall'Asta (3), G. Forlani (3), M. Fornari (3), R. Roncella (3), M. Santise (3)
- 1 ARPA Valle d'Aosta
- 2 Université de Fribourg (CH)
- 3 Università di Parma Dip. Ingegneria Civile, dell'Ambiente, del Territorio e Architettura





#### **DESCRIZIONE SITO**

### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

### **CONCLUSIONI**







## **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### CONCLUSIONI

#### **PROSPETTIVE**





La **velocità superficiale** dei rock glacier è un parametro importante per la caratterizzazione della loro dinamica, per comprendere le relazioni con il *global change* e per poter prevedere/ipotizzare la loro evoluzione futura (Kaab, 2007).

In alcuni casi è il parametro fondamentale sulla base del quale vengono adottate misure di protezione civile (Delaloye, 2013).

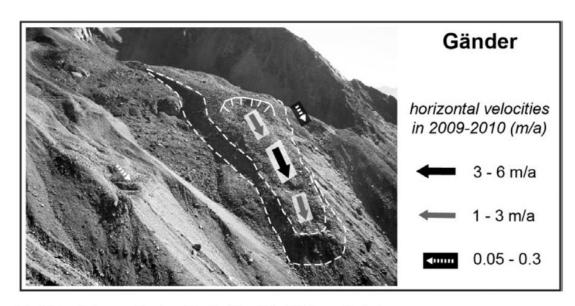



Fig. 5. Morphology and horizontal velocities of the Gänder rock glacier.

Rapidly moving rock glaciers in the Mattertal valley, Switzerland. Delaloye et al., 2013

## **DESCRIZIONE SITO**

#### **DATASET**

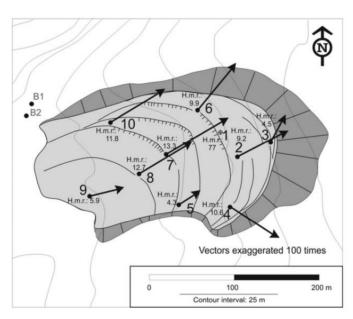
- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### CONCLUSIONI


#### **PROSPETTIVE**





Per il monitoraggio della velocità superficiale sono ampiamente diffusi i **sistemi GNSS** (misure periodiche o sistemi automatici fissi) i quali tuttavia <u>non forniscono un quadro esaustivo</u> (misure di singoli punti) e presentano alcuni svantaggi:

- necessità di percorrere direttamente la superficie
- possibilità di misurare un ridotto numero di punti
- discontinuità nelle serie in caso di variazione dei target



**Figure 10.** Surface flow velocity measurements and trajectories from 2001 to 2008. H.m.r.: horizontal movements rates in cm a<sup>-1</sup>.

Rock clacier dynamics in marginal periglacial environments. Serrano et al., 2010

# **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### CONCLUSIONI

#### **PROSPETTIVE**





Al fine di migliorare la conoscenza della dinamica del rock glacier Gran Sommetta di Cervinia (Valtournenche) è stato attivato un monitoraggio GNSS «tradizionale» dal 2012/08 e dal 2014 ha preso avvio un monitoraggio regolare tramite sistema UAV.

I **sistemi UAV** consentono di acquisire immagini con (i) alta risoluzione spaziale, (ii) alta risoluzione temporale, (iii) tempistica personalizzata.

Le immagini trattate con tecniche fotogrammetriche consentono di osservare variazioni della superficie fotografata.

Confronti multitemporali permettono di analizzare:

- Movimenti superficiali (XY) → analisi di velocità
- Variazioni di forma (Z) → comportamento del rock glacier (accumulo e diminuzione di massa)

## **DESCRIZIONE SITO**

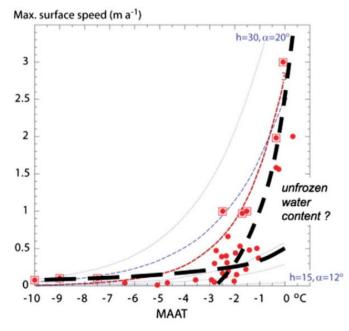
#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015


#### CONCLUSIONI

#### **PROSPETTIVE**





- 1) Le immagini UAV possono essere impiegate per migliorare la conoscenza delle caratteristiche e della dinamica dei rock glacier?
- 2) Al fine di ottimizzare/velocizzare il monitoraggio è possibile automatizzare parte del processo di analisi?



**Fig. 3.** Relation between surface flow velocities determined on creeping perennially frozen talus and debris (rock glaciers, mainly in the European Alps and on Svalbard) and estimated mean annual air temperature at the sites. The black dashed lines indicate the possibility of a two-segment curve with strong influence from meltwater penetration in frozen ground at near-melting temperatures.

Modified from Fig. 3 in Kääb et al. (2007).

Mountain permafrost – research frontiers and a special long-term challenge. Haeberli, 2013.

#### **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

### **CONCLUSIONI**

#### **PROSPETTIVE**





# **Gran Sommetta Rock Glacier**



- multilobato, alimentazione da falda di detrito, attivo
- quota compresa fra 2.625 m e 2.775 m (quota massima rilievo 3.000 m)
- lunghezza ∼ 500 m, larghezza ∼ 600 m
- spessore (based on the height of the front) of 20-30 m
- la fronte interessa la pista di discesa "Ventina" che rappresenta l'accesso estivo al comprensorio (lavori regolari di ripulitura della pista e rimodellamento)

# **Gran Sommetta Rock Glacier**

Il rock glacier Gran Sommetta è attualmente oggetto dei seguenti monitoraggi:

- a) velocità superficiale tramite campagne GNSS annuali (50 punti)
- b) velocità superficiale tramite GNSS fisso (1 punto)
- c) temperature interne con catene termometriche (2 punti, -20 m)
- d) temperature superficiali con datalogger (XXX punti)
- e) deformazioni interne con cavo TDR (2 punti, -20 m)
- f) <u>indagini geofisiche</u> *una tantum* (vedi P. Pogliotti pome!)
  - tomografia elettrica
  - sismica a riflessione
- g) velocità superficiale e variazioni superficiali tramite campagne UAV (annuali, mensili)

MOTIVAZIONE

**DESCRIZIONE SITO** 

# DATASET

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI





# Campagne GNSS: velocità superficiali

**MOTIVAZIONE** 

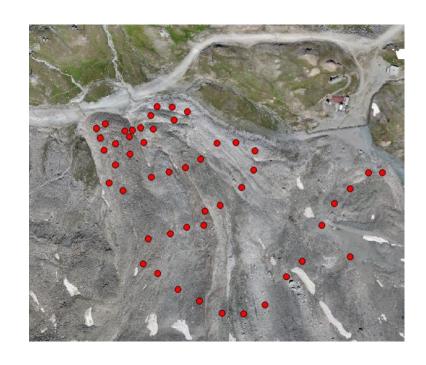
**DESCRIZIONE SITO** 

# **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**


- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 







Velocità annuali superficiali calcolate per ∼ 50 punti tramite Leica Viva GS10/15 in modalità GNSS NRTK:

- misurare spostamenti superficiali
- validare i DTM UAV

Precisioni attese di ~ 1 cm (xyz)

Campagne annuali realizzate il 10/20 agosto (dal 2012)

# Campagne GNSS: punti di appoggio (GCPs)



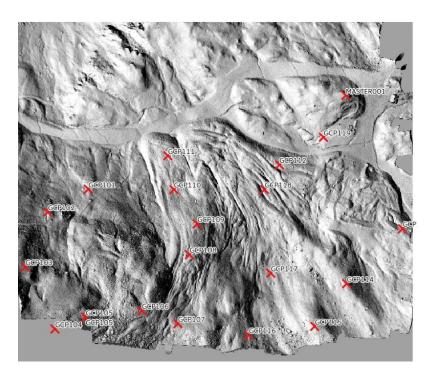
**DESCRIZIONE SITO** 

#### **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**


- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 









Misura della posizione di 23 punti di appoggio tramite GEOMAX Zenith serie 10 in modalità GNSS NRTK (virtual):

garantire appoggio ottimale del blocco fotogrammetrico

Precisioni attese di 1-2 cm (xy) e 2-3 cm (z)

Campagne contestuali ai voli UAV

#### **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### CONCLUSIONI

#### **PROSPETTIVE**





# **Campagne UAV: caratteristiche hardware**

# Necessità:

- Aree estese da mappare: tempi di volo!
- Alta quota (2.000 3.600 m)
- Peso ridotto e trasportabilità



2012 – SenseFly® Swinglet CAM equipped with a 12 Mpixel CANON IXUS 220HS 2014/15 – SenseFly® Swinglet CAM equipped with a 16 Mpixel CANON IXUS 125HS



| Technical specifications |                          |  |  |  |
|--------------------------|--------------------------|--|--|--|
| Weight                   | 550 g                    |  |  |  |
| Wingspan                 | 80 cm                    |  |  |  |
| Wing area                | 0.22 m <sup>2</sup>      |  |  |  |
| Nominal endurance        | 30 min                   |  |  |  |
| Propulsion               | Electric brushless motor |  |  |  |
| Nominal cruise speed     | 11 m/s                   |  |  |  |
| Wind resistance          | Up to 7 m/s              |  |  |  |
| Navigation               | Up to 50 waypoints       |  |  |  |
| Mission planner          | Emotion2                 |  |  |  |
| Mission control          | Emotion2                 |  |  |  |



# Campagne UAV: piano di volo

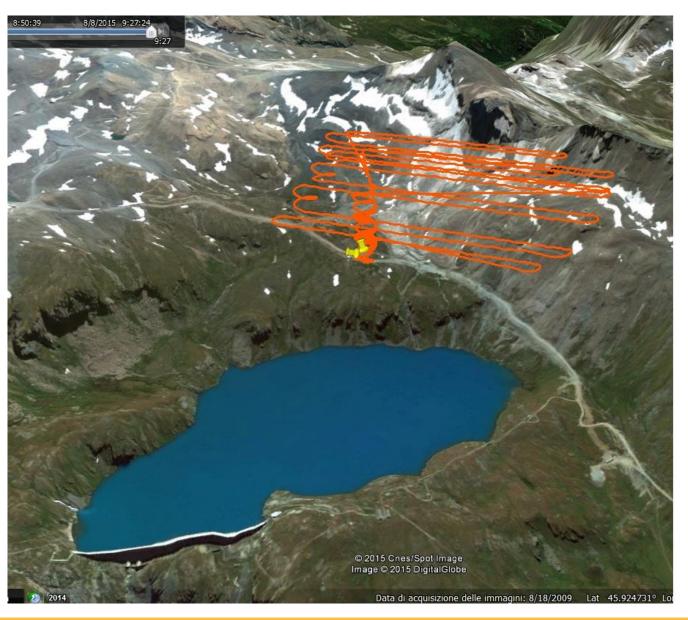
**MOTIVAZIONE** 

**DESCRIZIONE SITO** 

# **DATASET**

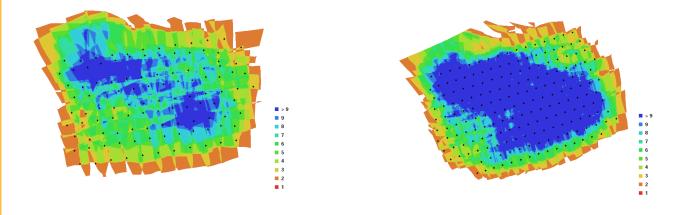
- campagne GNSS
- campagne UAV

**METODOLOGIA** 


#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 








# Campagne UAV: datasets e fotogrammetria

|                        | 2012                     | 2014                    | 2014                    | 2015                    |
|------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
| Data                   | October 24 <sup>th</sup> | August 18 <sup>th</sup> | October 3 <sup>rd</sup> | August 18 <sup>th</sup> |
| N° images acquisite    | 110                      | 246 (two flights)       | 239 (two flights)       | 192 (two flights)       |
| N° images usate        | 110                      | 246                     | 239                     | 192                     |
| Sovrapp. laterale      | 70%                      | 80%                     | 80%                     | 80%                     |
| Sovrapp. longitudinale | 60%                      | 85%                     | 85%                     | 85%                     |
| Ground resolution      | 5 cm/pixel               | 5 cm/pixel              | 5 cm/pixel              | 5 cm/pixel              |



Posizione centri di presa e sovrapposizione immagini (2012/10) (2015/08)

- Block Orientation: estrazione automatic dei tie point e feature matching, auto-calibrazione (MicMac, Agisoft PhotoScan).
- produzione DSM: dense image matching (MicMac, Agisoft PhotoScan).
- produzione ortoimmagini (Agisoft PhotoScan).

## **MOTIVAZIONE**

**DESCRIZIONE SITO** 

#### **DATASET**

- campagne GNSS
- campagne UAV

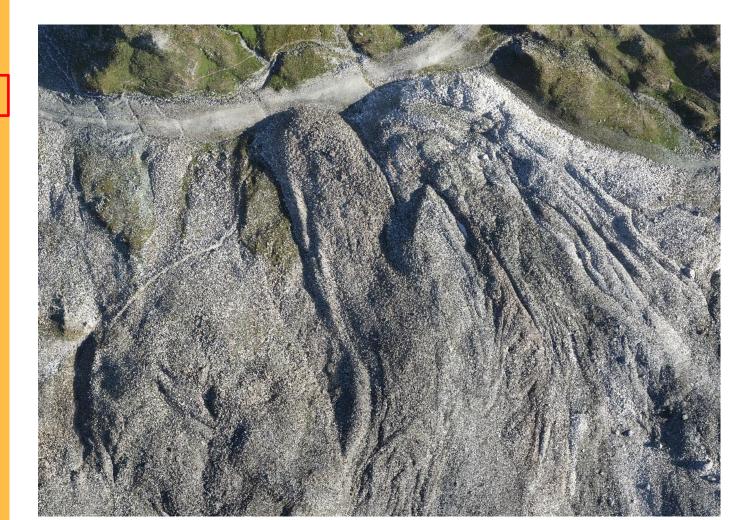
**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 






13-15 ottobre 2015, Quart (AO) Meeting Rock Glaciers

# Campagne UAV: prodotti - ortoimmagini

Raster, cell size 0.05 m



Ortoimmagine 2015/08

## **MOTIVAZIONE**

**DESCRIZIONE SITO** 

#### **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI





**DESCRIZIONE SITO** 

#### **DATASET**

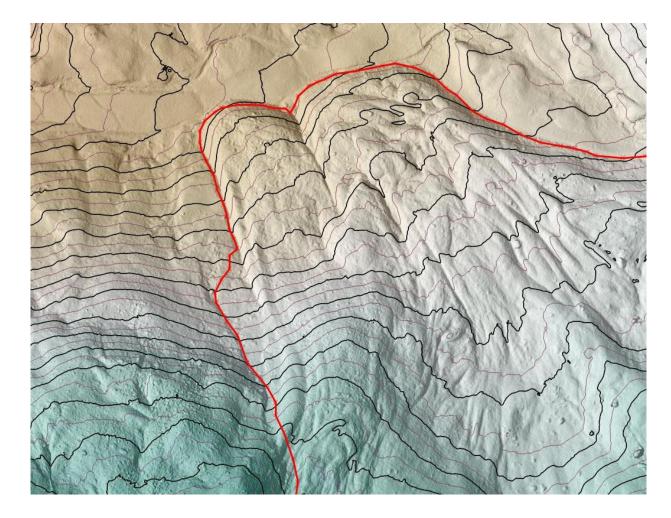
- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 


**PROSPETTIVE** 





# Campagne UAV: prodotti – modello digitale del terreno

Raster, cell size 0.20 m



DTM 2015/08

#### **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

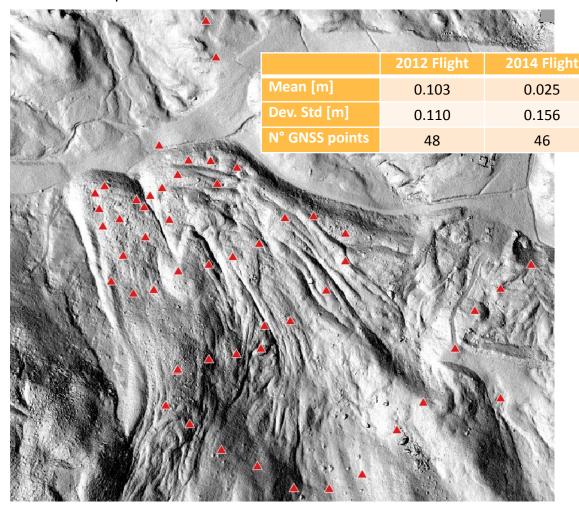
CONCLUSIONI

**PROSPETTIVE** 





# Campagne UAV: accuratezza dei dataset (z)


L'accuratezza dei DTM è stata valutata confrontando le quote dei 48 punti di monitoraggio GNSS (puntuale) e il valore di quota estratto dal DTM corrispondente

2015 Flight

0.022

0.140

44\*



**DESCRIZIONE SITO** 

# **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 





# Campagne UAV: accuratezza dei dataset (xy)

L'accuratezza planimetrica è stata valutata osservando le differenze di posizione di punti fissi riconoscibili sulle ortoimmagini (zone esterne al rock glacier)



**DESCRIZIONE SITO** 

# **DATASET**

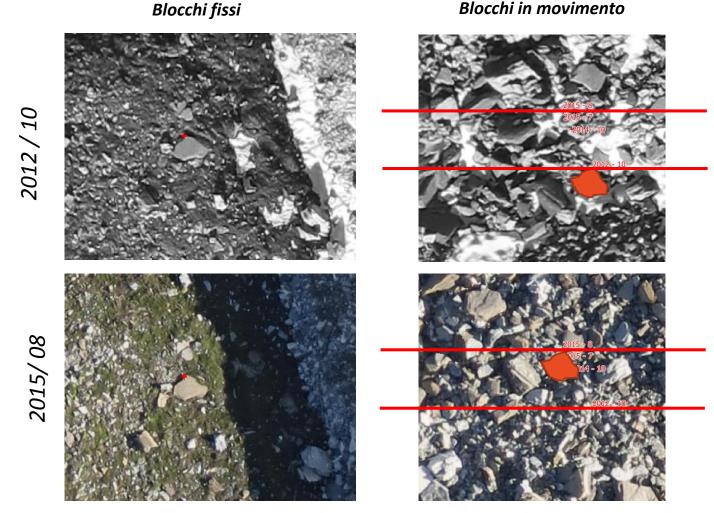
- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI


**PROSPETTIVE** 





# Campagne UAV: accuratezza dei dataset (xy)

L'accuratezza planimetrica è stata valutata osservando le differenze di posizione di punti fissi riconoscibili sulle ortoimmagini (zone esterne al rock glacier)



# Misura degli spostamenti

I campi di spostamento del rock glacier sono ottenuti confrontando ortoimmagini e DTM derivati da voli UAV nel periodo 2012 – 2015.

# MOTIVAZIONE

**DESCRIZIONE SITO** 

# DATASET

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

# RISULTATI

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 







Identificazione manuale di punti ben riconoscibili sulle ortoimmagini

2. Misure automatiche dello spostamento



• Modello digitale del terreno 0.2 m

Tracking automatico di una griglia densa di punti



I campi di spostamento del rock glacier sono ottenuti confrontando ortoimmagini e DTM derivati da voli UAV nel periodo 2012 – 2015.

Ortoimmagini a 0.05 m

# DESCRIZIONE SITO

MOTIVAZIONE

# DATASET

campagne GNSS

- campagne IIA\
- campagne UAV

METODOLOGIA

# **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 





Selezione manuale di punti omologhi sulle serie di ortoimmagini:

- target: blocchi con geometria regolare (no rotazione, no scivolamento)
- scala fissa nella fase di interpretazione

1. Misure manuali

dello spostamento

- densità minima di punti: 1 punto per cella su grid di 10 m lato
- alcuni "vuoti" nei dataset: la qualità delle ortoimmagini può compremettere l'interpretazione.
- +++: possibilità di descrivere l'intera area di monitoraggio migliore comprensione delle dinamiche di spostamento
- ---: very time consuming: fino a 1.000 punti per descrivere 0.25 Kmq

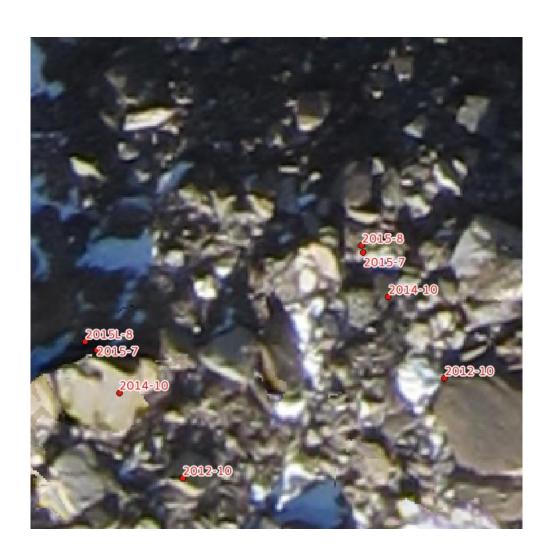
#### **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

#### DATASET

- campagne GNSS
- campagne UAV

# **METODOLOGIA**


#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

### **CONCLUSIONI**







## **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

#### DATASET

- campagne GNSS
- campagne UAV

# **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### **CONCLUSIONI**







#### **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

#### DATASET

- campagne GNSS
- campagne UAV

# **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014** 2015
- luglio agosto 2015

# CONCLUSIONI







## **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

#### DATASET

- campagne GNSS
- campagne UAV

# **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014** 2015
- luglio agosto 2015

### **CONCLUSIONI**







# Misura degli spostamenti: AUTOMATICO

I campi di spostamento del rock glacier sono ottenuti confrontando ortoimmagini e DTM derivati da voli UAV nel periodo 2012 – 2015.

# MOTIVAZIONE

**DESCRIZIONE SITO** 

### **DATASET**

- campagne GNSS
- campagne UAV

# **METODOLOGIA**

### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

## **CONCLUSIONI**

**PROSPETTIVE** 





2. Misure automatiche dello spostamento

- Ortoimmagini a 0.20 m
- Modello digitale del terreno 0.2 m

Tracking automatico di una griglia densa di punti

Il tracciamento automatico di punti omologhi è stato realizzato, applicandolo sia sulle ortoimmagini, sia sui DTM, impiegando specifici algoritmi:

- **DenseMatcher** (Re, et al., 2012), che implementa un algoritmo Least Squares Matching (LSM);
- Semi-Global Matching (SGM) algorithm (Hirschmuller, 2005; Dall'Asta, 2014).



# **DESCRIZIONE SITO**

#### DATASET

- campagne GNSS
- campagne UAV

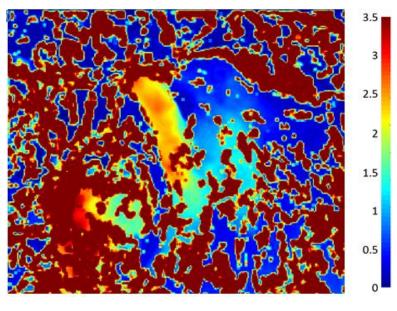
#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### CONCLUSIONI

#### **PROSPETTIVE**






# Misura degli spostamenti: AUTOMATICO

I campi di spostamento ottenuti applicando l'algoritmo Area Based Matching (ABM) alle ortoimmagini ha dato **risultati insoddisfacenti** in relazione alla eccessiva eterogeneità delle immagini impiegate (long time-separated images).

# **ORTOIMMAGINI**









# Misura degli spostamenti: GNSS

#### **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

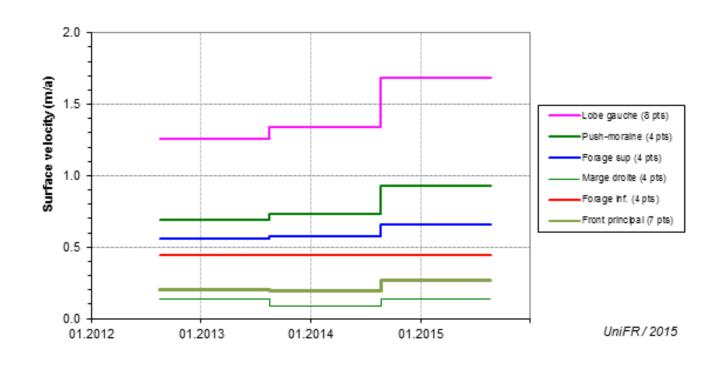
#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015


#### CONCLUSIONI

#### **PROSPETTIVE**





# Gran Sommetta rock glaciers Annual velocity



# Misura degli spostamenti: GNSS

#### **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

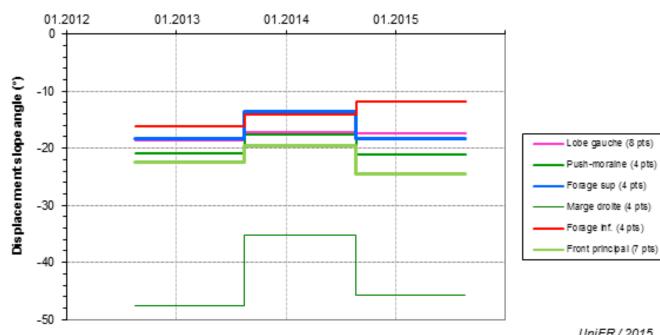
#### DATASET

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015


#### CONCLUSIONI

#### **PROSPETTIVE**





# Gran Sommetta rock glaciers Annual displacement slope angle



UniFR/2015

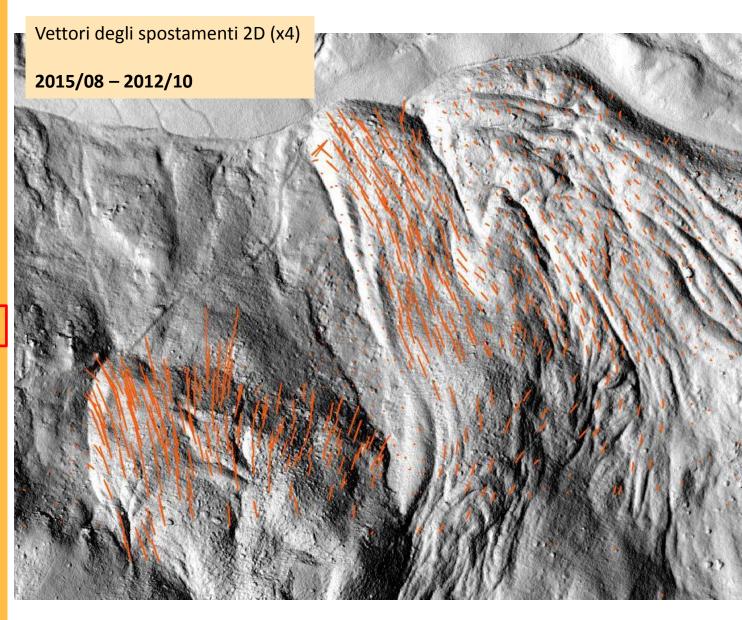
**MOTIVAZIONE** 

**DESCRIZIONE SITO** 

# **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 


#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI







**MOTIVAZIONE** 

**DESCRIZIONE SITO** 

# **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 







2012/10 Hillshaded DTM (270 – 45)

**MOTIVAZIONE** 

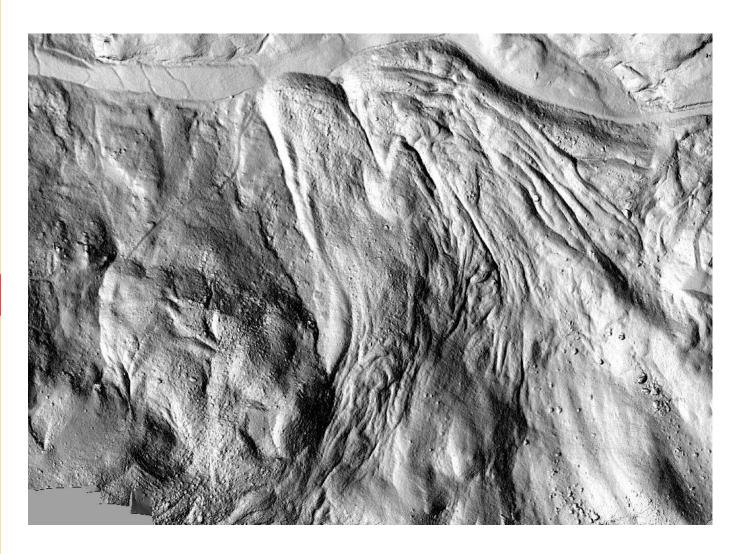
**DESCRIZIONE SITO** 

# **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

### **RISULTATI**


- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 







2014/10 Hillshaded DTM (270 – 45)

**MOTIVAZIONE** 

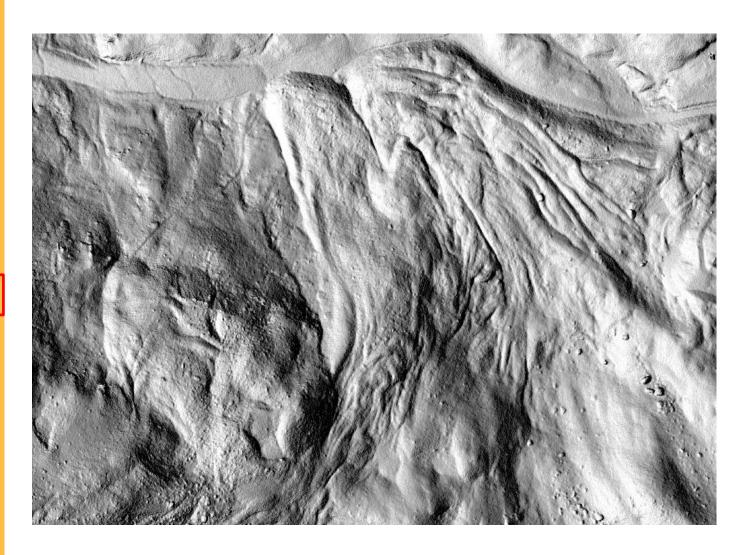
**DESCRIZIONE SITO** 

# **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

### **RISULTATI**


- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 







2015/07 Hillshaded DTM (270 – 45)

**MOTIVAZIONE** 

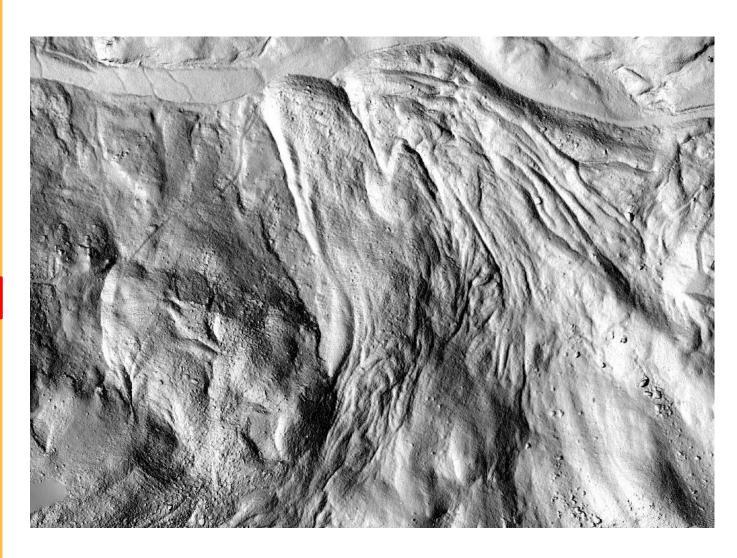
**DESCRIZIONE SITO** 

# **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

### **RISULTATI**


- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 







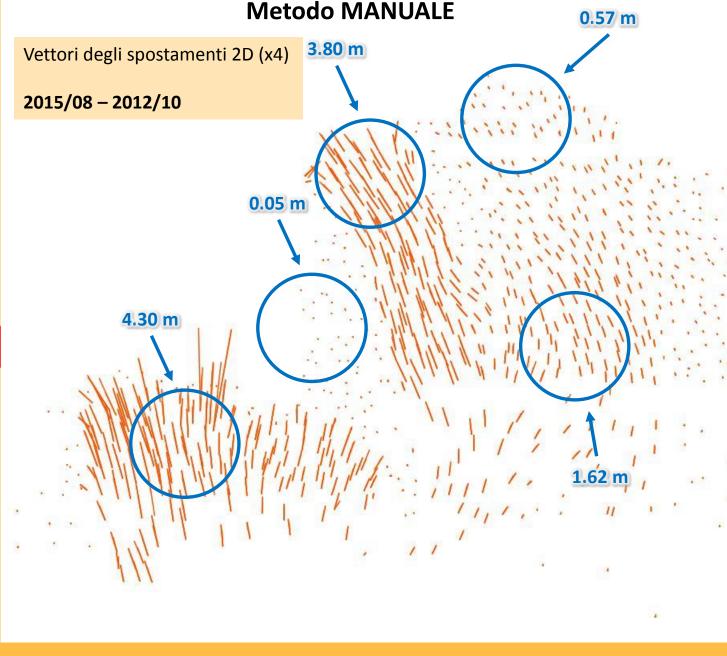
2015/08 Hillshaded DTM (270 – 45)

## **DESCRIZIONE SITO**

#### DATASET

- campagne GNSS
- campagne UAV

# **METODOLOGIA**


#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

# **CONCLUSIONI**







% spostamento sullo spostamento totale in aree con spostamenti significativamente differenti

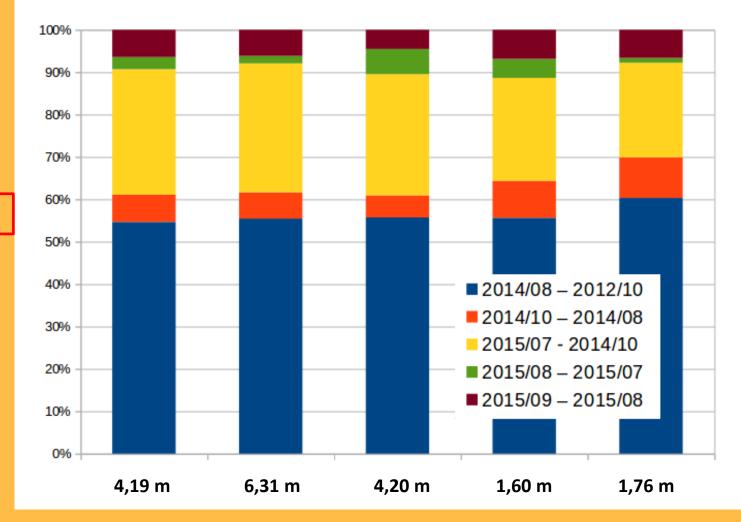
# **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**


#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### CONCLUSIONI







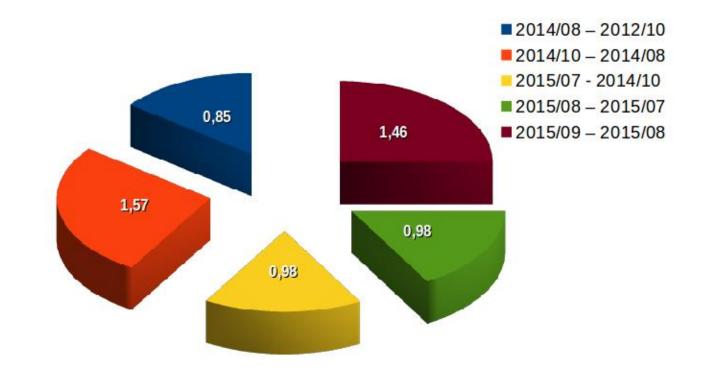
#### **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**


#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### **CONCLUSIONI**







## Metodo AUTOMATICO [2012/10 – 2014/10]

Le tecniche di image matching sono applicabili vantaggiosamente a raster floating-point e l'individuazione di elementi omologhi può essere realizzata direttamente su DSM.

# 2.5

Mappa degli spostamenti 2D [m] ottenuta applicando ABM a due DTM successiie (**2012/10 – 2014/10**)

#### **MOTIVAZIONE**

**DESCRIZIONE SITO** 

#### **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 





#### **DESCRIZIONE SITO**

#### DATASET

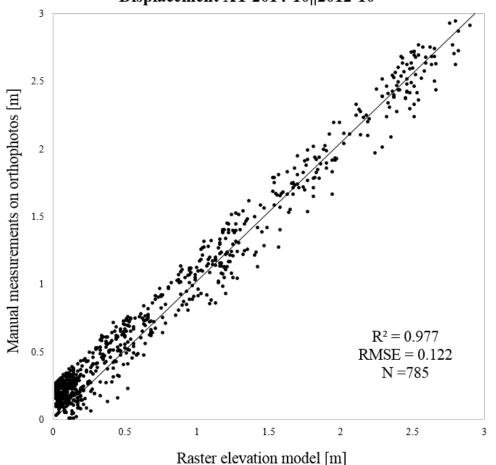
- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### **CONCLUSIONI**

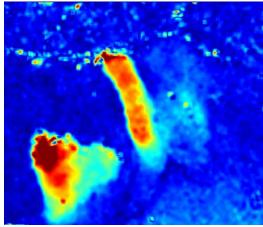

#### **PROSPETTIVE**





# Metodo AUTOMATICO Confronto tra metodo *manuale* e *automatico*

**Displacement XY 2014-10||2012-10** 




Scatterplot degli spostamenti ottenuti dal confronto automatico di DTM e gli spostamenti determinati con il metodo manuale di **785 punti**.

## Metodo AUTOMATICO [2014/10 - 2015/08]

Le tecniche di image matching sono applicabili vantaggiosamente a raster floating-point e l'individuazione di elementi omologhi può essere realizzata direttamente su DSM.

# 



#### Mappa degli spostamenti 2D [m] ottenuta applicando ABM a due DTM successivi (**2014/10 – 2015/08**)

#### **MOTIVAZIONE**

#### **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 





13-15 ottobre 2015, Quart (AO) Meeting Rock Glaciers

#### **DESCRIZIONE SITO**

#### DATASET

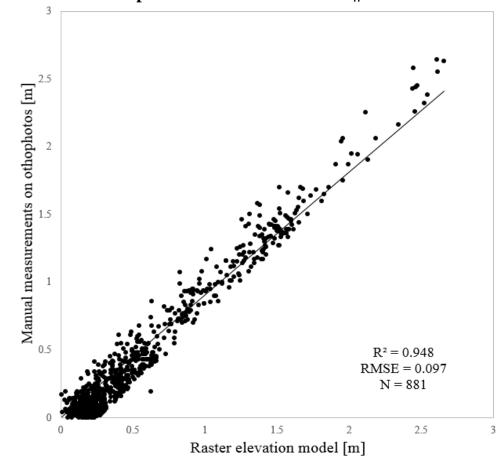
- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### **CONCLUSIONI**


#### **PROSPETTIVE**





# Metodo AUTOMATICO Confronto tra metodo *manuale* e *automatico*

**Displacements XY 2015-08-01 || 2014-10-01** 



Scatterplot degli spostamenti ottenuti dal confronto automatico di DTM e gli spostamenti determinati con il metodo manuale di **881 punti**.

## Metodo AUTOMATICO [2015/07 - 2015/08]

Le tecniche di image matching sono applicabili vantaggiosamente a raster floating-point e l'individuazione di elementi omologhi può essere realizzata direttamente su DSM.

#### MOTIVAZIONE

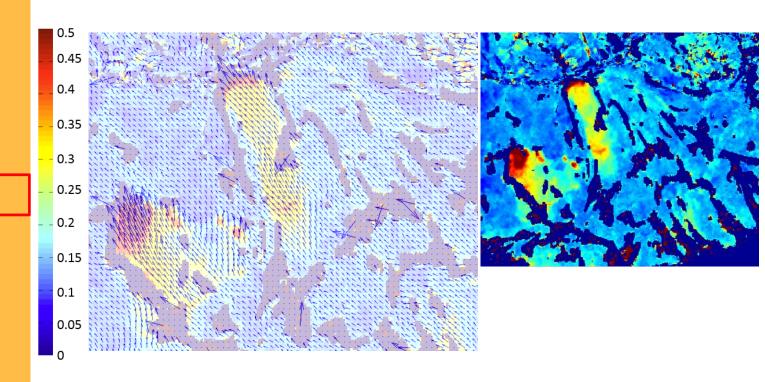
**DESCRIZIONE SITO** 

#### **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**


- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 







Mappa degli spostamenti 2D [m] ottenuta applicando ABM a due DTM successivi (**2015/07 – 2015/08**)

#### **DESCRIZIONE SITO**

#### DATASET

- campagne GNSS
- campagne UAV

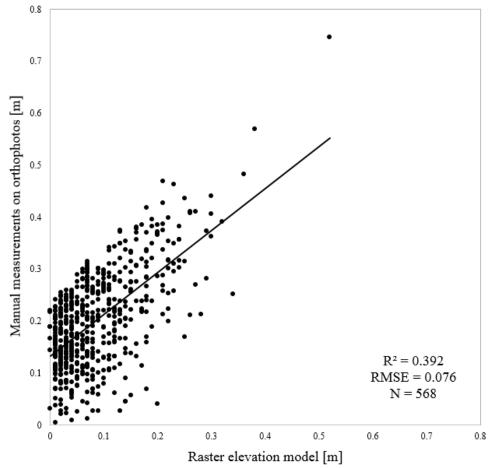
#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

#### CONCLUSIONI

#### **PROSPETTIVE**






# Metodo AUTOMATICO

# Confronto tra metodo manuale e automatico

**Displacements XY 2015-08** || **2015-07** 



Scatterplot degli spostamenti ottenuti dal confronto automatico di DTM e gli spostamenti determinati con il metodo manuale di **568 punti**.

#### **DESCRIZIONE SITO**

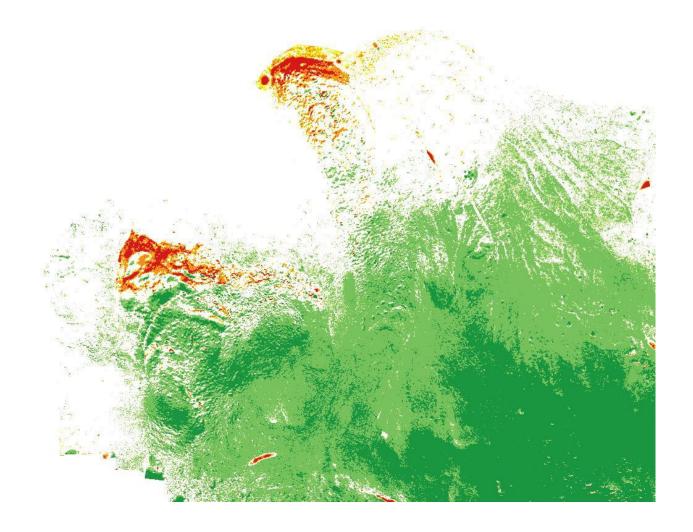
#### DATASET

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015


**CONCLUSIONI** 

**PROSPETTIVE** 





# Analisi variazioni della superficie (esplorativo!) Differenza di DTM (20141003-20150808)



#### **DESCRIZIONE SITO**

#### **DATASET**

- campagne GNSS
- campagne UAV

#### **METODOLOGIA**

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

CONCLUSIONI

**PROSPETTIVE** 





# Analisi variazioni della superficie (esplorativo!) Differenza di DTM (20141003-20150808)



## Conclusioni preliminari

Le immagini UAV permettono un'analisi accurata, sufficientemente rapida e spazialmente compelta dei campi di spostamento (xy) dei rock glacier

La **metodologia è esportabile** (sito-indipendente), l'acquisizione e il trattamento dati richiedono competenze specialistiche

La tecnica è valida anche in **fase preliminare** per una caratterizzazione di massima e per la definizione di rete di misura GNSS tradizionale

Il metodo automatico è applicabile per riconoscere spostamenti "significativi", nel caso del RG Gran Sommetta, spostamenti stagionali (algoritmi applicabili solo su raster DTM (hillshaded), no ortoimmagini)

#### Nel dettaglio:

- impiego UAV limitato dalle condizioni meteo
- necessari alti ricoprimenti laterali e longitudinali
- necessari un minimo punti di GCPs ben distribuiti (!!!)
- tecnica remota (particolarmente interessante per siti inacessibili)
- necessità di co-registrare i DTM per l'analisi delle variazioni di superficie

#### MOTIVAZIONE

**DESCRIZIONE SITO** 

#### **DATASET**

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 





# **Prospettive**

Analisi velocità/accelerazioni e confronto con altri siti alpini (es. Mattertal)

Densità spaziale e disegno di campionamento dei punti da tracciare (grid,

transetti longitudinali, transetti trasversali, 5X5m, 10x10m, 20x20m)??

campagne GNSS

campagne UAV **METODOLOGIA** 

MOTIVAZIONE

DATASET

**DESCRIZIONE SITO** 

### RISULTATI

**2012 - 2014 2014 - 2015** 

luglio - agosto 2015

CONCLUSIONI

**PROSPETTIVE** 





Migliorare l'analisi 3D basata su analisi multitemporale di DTM

Analisi 3D sui punti omologhi individuati manualmente

# Help us....

Altri algoritmi per il tracking automatico??







13-15 ottobre 2015, Quart (AO) Meeting Rock Glaciers

<u>U. Morra di Cella</u>, F. Diotri, R. Delaloye, P. Pogliotti, E. Dell'Asta, G. Forlani, M. Fornari, R. Roncella, M. Santise Analisi comparata di velocità superficiali mediante UAV e GNSS al rock glacier della Gran Sommetta (Valtournanche)

## **UAS photogrammetry: simulations**

Why simulations?

To find out the minimum # GCPs necessary to get a precision of 5 cm on the displacements

A synthetic block was designed with the same parameters (relative height flight, overlaps, DSM) as the 2014 flight.

Based on 2012-2014 data, an average displacement of about 15 cm per month in summer time was estimated.

Computation of expected ground coordinates by variance propagation (covariance matrix of the tie points of bundle adjustment) with **23 GCP** distributed over the area and **9 GCP** on the boundary only

|  |   | Mean values and std. dev. of estimated precision |                  |          |                  |
|--|---|--------------------------------------------------|------------------|----------|------------------|
|  |   | 23 GCP                                           |                  | 9 GCP    |                  |
|  |   | Mean<br>(m)                                      | Std. Dev.<br>(m) | Mean (m) | Std. Dev.<br>(m) |
|  | Х | 0.019                                            | 0.011            | 0.020    | 0.011            |
|  | Υ | 0.020                                            | 0.011            | 0.021    | 0.011            |
|  | Z | 0.042                                            | 0.027            | 0.044    | 0.027            |

Due to high block redundancy, the difference is negligible

## MOTIVAZIONE

DESCRIZIONE SITO

#### DATASET

- campagne GNSS
- campagne UAV

**METODOLOGIA** 

#### **RISULTATI**

- **2012 2014**
- **2014 2015**
- luglio agosto 2015

**CONCLUSIONI** 

**PROSPETTIVE** 





13-15 ottobre 2015, Quart (AO) Meeting Rock Glaciers